A Novel Slice-selective Implementation of the Adiabatic T₂Prep Sequence Objectively Improves Coronary Artery Conspicuity

Sahar Soleimanifard¹, Michael Schär^{1,2}, Allison G. Hays¹, Jerry L. Prince¹, Robert G. Weiss¹, and Matthias Stuber^{1,3}

¹Johns Hopkins University, Baltimore, MD, United States, ²Philips Healthcare, Cleveland, OH, United States, ³University of Lausanne, Lausanne, Switzerland

INTRODUCTION: In non-contrast coronary magnetic resonance angiography (MRA), the T_2 preparation pre-pulse (T_2 Prep) [1] has been widely used for contrast enhancement between the coronary blood-pool and the myocardium [2-4]. To minimize flow sensitivity and the effect of field inhomogeneities, a non slice-selective version of the pre-pulse is commonly used. With the advent of high-field systems, an adiabatic version of this T_2 Prep scheme was proposed [5] to avoid B_0 - and B_1 -related artifacts at 3.0T. However, independent of field strength, this non-selective pre-pulse affects the magnetization both inside and outside the imaged volume, resulting in a reduced steady-state magnetization of the in-flowing blood, and a resultant penalty in signal-to-noise-ratio (SNR). We hypothesize that a *slice-selective* T_2 Prep would leave the magnetization of blood outside the imaged volume unaffected, and thereby minimize the penalty in SNR of the blood flowing into the coronary arteries. The purpose of this work was therefore to implement an artifact-free slice-selective T_2 Prep sequence and to assess the gain in SNR and vessel conspicuity quantitatively.

METHODS: Implementation: The slice-selective T_2Prep was implemented by replacing the non-selective 90° RF pulses with slice-selective versions plus flow-compensating gradients using gradient momentnulling, and an additional time gap between the T_2Prep and other pre-pulses (T_{gap}) to allow for inflow of a larger volume of blood with equilibrium magnetization (Fig. 1). On the scanner, the T_2Prep volume was graphically selected along the arterial axis and orthogonal to the imaged volume without covering the ventricles or the ascending aorta (Fig. 2C) to avoid saturation of the spins before in-flow into the coronary arteries. **Experiments:** Volume targeted three-dimensional navigator gated free-breathing coronary MRA [4] including a fast noise scan (~ 9sec) for SNR measurements on SENSE images [6] were acquired on a whole body 3.0T scanner (Achieva, Philips Healthcare, Best, The Netherlands) a) without T_2Prep , b) with the

Fig. 1. (A) A time interval T_{gap} added between T_2Prep and other pre-pulses allows for a larger volume of blood with equilibrium magnetization flowing into the imaged volume. (B) Schematic of the proposed slice-selective T_2Prep pulse sequence.

conventional T₂Prep, and c) with the proposed slice-selective T₂Prep in 10 healthy adult volunteers. Scan parameters were the following: TR = 4.1ms, TE = 1.5ms, FA = 20°, RF excitations per k-space segment = 25, SENSE factor = 2, FOV = $300 \times 300 \times 32mm^3$, voxel size = $0.8 \times 0.8 \times 2.0mm^3$, TE of T₂Prep = 50ms, T_{gap} = 150ms, scan time ~ 2min (navigator efficiency ~ 40%). Analysis: On each coronary of interest, two endpoints were manually identified (yellow squares, Fig. 3C and 3D). Vessel centerline (dotted red line, Fig. 3C and 3D) and boundary (orange lines, Fig. 3C and 3D) were identified using an automatic algorithm developed in-house to minimize time and variability caused by manual interventions. Vessel boundaries, once segmented, were dilated by five pixels to identify the vessel-neighborhood region (blue

Fig. 2. Example of an RCA using no T_2Prep contrast (A), non-selective T_2Prep (B), slice-selective T_2Prep (C). Dotted lines illustrate the orientation of selective T_2Prep .

Left Anterior Descending

lines, Fig. 3C and 3D). Three coronary artery segments were identified on each vessel according to the recommendations of American Heart Association [7]. Repeated measures of vessel boundary sharpness (VS), blood signal-tonoise-ratio (SNR), and vessel-neighborhood contrast-to-noise-ratio (CNR) were measured using anatomical and noise scans, and statistically compared using analysis of variance (ANOVA) with Tukey post hoc test.

RESULTS: Proximal and mid segments were identified on all images (n=10 for the right coronary artery (RCA); n=5 for the left anterior descending artery (LAD)). Distal segments were identified on 6 datasets only and thus excluded from analysis. Fig. 2C shows an RCA obtained with the slice-selective T_2 Prep localized along the dark bar (arrows). VS improved significantly using the proposed implementation, when compared to the non-selective T_2 Prep (proximal: 52±2% vs. 45±3%, p=0.0037; mid: 55±3% vs. 48±3%, p=0.0026, Fig. 4A). While both T_2 Prep variants led to an SNR penalty when compared

to no T₂Prep as previously reported [2], the slice-selective T₂Prep still led to a significantly improved SNR compared to conventional T₂Prep (proximal: 42.5 ± 3.7 vs. 28.7 ± 2.7 , p<0.0001; mid: 33.1 ± 3.5 vs. 25.0 ± 3.3 , p<0.0001, Fig. 4B). A similar finding was observed for CNR measurements (proximal: 18.8 ± 2.5 vs. 13.0 ± 2.4 , p=0.0127, mid: 19.2 ± 2.6 vs. 13.99 ± 2.1 , p=0.0036, Fig. 4C).

ACKNOWLEDGEMENT: This work was supported in part by NIH/NHLBI grants RO1HL084186, ARRA 3R01Hl084186-04S1.

REFERENCES: [1] *MRM*'95; 33:689-96. [2] *Circulation*'99; 99:3139-48. [3] *NEJM*'01; 345:1863-69. [4] *JACC*'99; 34:524-31. [5] MRM'06 55:858-64; [6] JMRI'11; 33:1330-40. [7] Circulation'75; 51:5-40.

Right Coronary Artery

Fig. 3. Vessel centerline (dotted red line) and boundary segmentation (orange line) using two user-selected endpoints (yellow square). Blue lines mark vessel neighborhood.