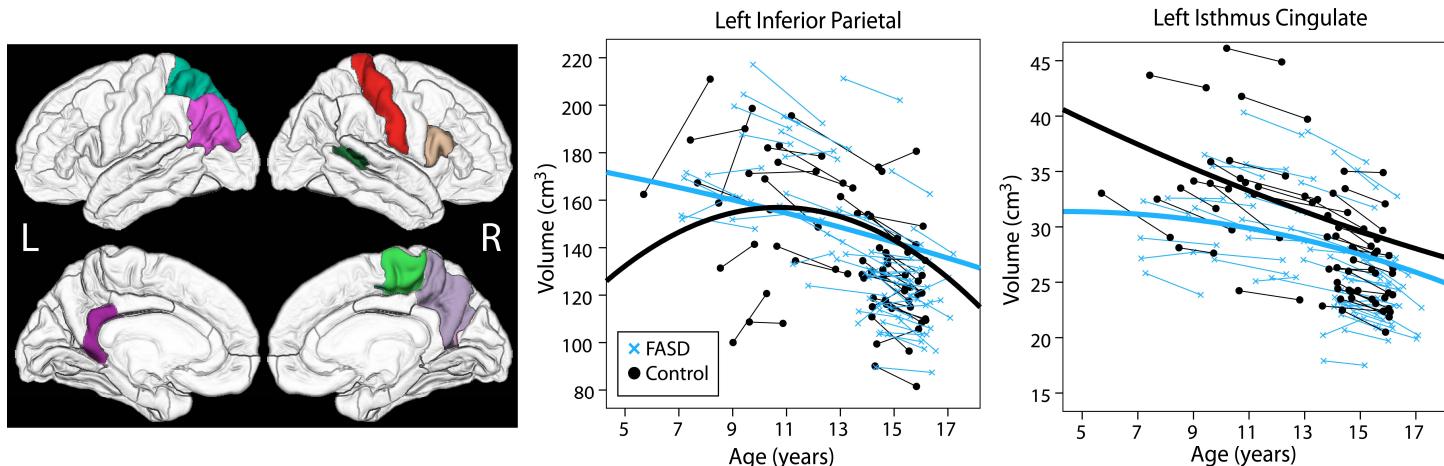


Longitudinal Structural Brain Changes in Children and Adolescents with Prenatal Alcohol Exposure

Catherine Lebel¹, Eric Kan², Sarah Mattson³, Edward Riley³, Kenneth Jones⁴, Colleen Adams⁵, Philip May⁶, Mary O'Connor⁷, Katherine Narr¹, and Elizabeth Sowell^{1,2}
¹Neurology, University of California, Los Angeles, CA, United States, ²Children's Hospital Los Angeles, CA, United States, ³Psychology, San Diego State University, CA, United States, ⁴Pediatrics, University of California, San Diego, CA, United States, ⁵Psychiatry and Mental Health, University of Cape Town, South Africa, ⁶Nutrition, University of North Carolina, Chapel Hill, NC, United States, ⁷Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States


INTRODUCTION: Children and adolescents with prenatal exposure to alcohol often exhibit cognitive, behavioral and neurological problems relative to controls¹, including structural brain differences such as reduced brain volume²⁻⁴ and abnormal cortical thickness^{5,6}. Although studies report abnormalities over a range of ages, the trajectory of brain development in subjects with fetal alcohol spectrum disorders (FASD) remains unclear. In healthy subjects, the cortex thickens then thins with age, following nonlinear trajectories that vary regionally⁷. A recent cross-sectional study including subjects overlapping with those of the current investigation demonstrated thicker cortices in FASD in bilateral inferior frontal regions, but effects of age were not examined⁸. Another cross-sectional study found age-related cortical thinning in subjects with FASD, though trajectories did not differ significantly from controls⁵. Longitudinal investigations provide increased statistical power for detecting more subtle differences in brain structure across time, and thus our goal was to investigate trajectories of cortical volume changes in subjects with prenatal alcohol exposure compared to unexposed controls.

METHODS: This study included 87 subjects from three sites. Subjects were initially aged 5.7-16.3 years (12.4±2.6) and were each scanned twice (mean gap=1.8 yrs) at the same site. T1-weighted MRI data was collected in Los Angeles (n=32, 17m/15f, 23 FASD/9 control), San Diego (n=6, 4m/2f, 2 FASD/4 control), and Cape Town (n=49, 25m/24f, 24 FASD/25 control) on 1.5T Siemens Sonata, 3T GE Signa and 3T Siemens Allegra MRI scanners, respectively. Parameters for LA/SD/CT were TR=1900/7.8/2200 ms, TE=4.38/3.0/5.16 ms, flip angle 15°/12°/12°, voxel size 1x1x1/0.94x0.94x1/1x1x1 mm, acquisition time 8:08/7:24/7:04. Data was processed in the FreeSurfer v5.1 longitudinal processing stream to extract 66 cortical volumes (33 per hemisphere). A preliminary mixed models analysis tested each region for age-related volume changes in either group, controlling for site, at p<0.00076 (p<0.05 corrected for 66 comparisons). Only regions with significant age effects were analyzed for age-by-group or age²-by-group interactions; this threshold was set to p<0.05, given previous correction at the age effects stage and the exploratory nature of these comparisons.

RESULTS/DISCUSSION: Of 66 total regions, 37 had significant age-related changes in the exposed and/or control groups. Of these, eight demonstrated significant interaction terms (Fig. 1). The left inferior and superior parietal, right bank of the superior temporal sulcus, right pars opercularis, right paracentral, right postcentral, and right precuneus regions had significant age²-by-group interactions in which control subjects had quadratic trajectories with increases then decreases, while FASD subjects demonstrated more steadily declining volumes (e.g., inferior parietal region, Fig. 1). In the left isthmus cingulate, age-by-group and age²-by-group interactions were significant; both groups had volume declines across the age range, though they were steeper in controls (Fig. 1).

Most changes were observed in parietal lobes, areas known to be abnormal in FASD^{3,6}. The smaller overall volume changes in FASD subjects suggest reduced cortical plasticity, and may help reconcile discrepancies in previous findings which report both increased^{6,8} and decreased⁵ cortical thickness in FASD relative to controls. Although not significantly different here (IQ_{FASD}=77±20; IQ_{control}=80±24; p=0.5), subjects with FASD generally have lower IQ than controls, which may contribute to the observed trajectory differences, given similar observations in healthy subjects with superior intelligence versus those with average intelligence⁹.

CONCLUSIONS: In the first longitudinal study of cortical development in prenatal alcohol exposure, we demonstrate several regions with different developmental trajectories from controls, implying reduced brain plasticity in subjects with prenatal alcohol exposure. This suggests that early treatments and interventions may have more impact, and ultimately be more beneficial in this population.

FIGURE 1: Age by group and/or age² by group interactions were significant in eight regions: the left superior parietal (teal), left inferior parietal (pink), left isthmus cingulate (purple), right posterior bank of the superior temporal sulcus (dark green), right postcentral (red), right pars opercularis (beige), right paracentral (light green) and right precuneus (gray). These areas had different trajectories for FASD and control subjects, as shown in two example areas.

REFERENCES: 1. Riley *et al.*, *Neuropsychol Rev* **21**: 73. 2011. 2. Nardelli *et al.*, *Alcohol Clin Exp Res* **35**: 1404. 2011. 3. Archibald *et al.*, *Dev Med Child Neurol* **43**: 148. 2001. 4. Lebel *et al.*, *Alcohol Clin Exp Res* **32**: 1732. 2008. 5. Zhou *et al.*, *Neuroimage* 2011. 6. Sowell *et al.*, *Cereb Cortex* **18**: 136. 2008. 7. Sowell *et al.*, *Cereb Cortex* **17**: 1550. 2007. 8. Yang *et al.*, *Cereb Cortex* 2011. 9. Shaw *et al.*, *Nature* **440**: 676. 2006.