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Introduction

In dynamic contrast-enhanced (DCE) MRI, errors propagate in a highly non-trivial way from a number of sources of uncertainty to the parametric maps. Several authors
have investigated this topic using simulations, e.g., Kershaw et al. [1]. However, knowledge of the uncertainty should, ideally, accompany each parametric map in DCE-
MRI. For this purpose, explicit equations for the uncertainty are preferred since they do not require time-consuming multiple refitting of models to the data. The aim of
this work was to develop and investigate a linear multivariate error propagation method applicable to number of different and complex sources of uncertainty.

Method

Ideally, at sufficient SNR, magnitude MR images show normally distributed and temporally uncor-
related noise over the image series collected in a DCE-MRI experiment. Thus, it is optimal [2] to use
the ordinary least squares (OLS) estimator to find the pharmacokinetic (PK) parameters p. However,
a combined signal and pharmacokinetic model, f, depends on other parameters than p, e.g., the
arterial input function (AIF), baseline signal (S)), baseline 7; (7)), contrast agent relaxivity, flip
angle, etc., and all of these are associated with a given uncertainty. Let these parameters be denoted

q and let the measured values of the time curve in a voxel be S;. The OLS estimate p of p is then
given by

f):argminZ(Si—f(ti,p,(i))z, (1)

where # denotes sampling time-points. A linear approximation can be used to find for the covariance
of p if the noise inp and q are sufficiently small and if the noise in S; and q are independent. The
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simulated uncertainties for the spoiled gradient echo sequence and the extended Tofts model [3].
Settings used in the simulation were TR/TE = 4/1.79 ms, flip angle = 20°, total duration/temporal
resolution = 424/2.65 s, the transfer constant K" = 0.15 min™, extracellular extravascular volume
fraction v, = 0.30, and the blood plasma volume fraction v, = 0.04. Four different sources of
uncertainty were investigated by adding noise to S;, Sy, T}y, and by introducing a random error in the
AIF peak and tail amplitudes. All noise sources were normally distributed with zero mean. The two
variables that introduced errors in the AIF were independent. In the Monte Carlo simulation, 10 000
repeated fits, at each noise level, were performed to find the simulated coefficient of variation (CV)

of p . For each simulation, Eq. (2) was evaluated to yield an estimated CV of p . When evaluating Eq.

2), 6‘§ was found from the residuals of the fit, while the true covariances of the AIF, Syand T;, were

used. The proposed method was also tested on real data, acquired with the same imaging settings as s d
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in the simulation. The variances of Sy and 7)o were found from 20 baseline images and the standard o5 = 25
error from the calculation of 7. The covariance of the AIF was extracted from 10 measured AIFs. — aF

Results 515- o
Figure 1 shows the results of the Monte Carlo simulation and the uncertainty estimation. The agree- = 104
ment was in general good but at high noise levels deviations are apparent especially for noise in the
baseline signal (b) and in the baseline T}, value (¢). Furthermore, the precision tended to deteriorate
at high noise levels. Figure 2 (a) and (b) show a K" map and a map of the standard deviation in
K", respectively. In Figure 2 (¢) and (d), the CVs of K™, v,, and v, in the two pixels indicated in
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(a) are displayed. Figure 2: (a) K" map. (b) Map of standard deviation of

K", (¢) CV of a voxel indicated in (a). (d) CV of a
Discussion and conclusions voxel indicated in (a). The CVs in (¢) and (d) are
The Monte Carlo simulations indicate that Eq. (2) accurately predicts the CV of the estimated subdivided to show the contributions from each source of
parameters at moderate noise levels also for complicated sources of uncertainty such as the AIF. That uncertainty to the total variance.

Eq. (2) is limited to moderate noise was expected from the linear approximation. The example on
real data shown in Figure 2 demonstrates that spatially resolved maps of uncertainty subdivided by origin are feasible in vivo.
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