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Introduction 
In dynamic contrast-enhanced (DCE) MRI, errors propagate in a highly non-trivial way from a number of sources of uncertainty to the parametric maps. Several authors 
have investigated this topic using simulations, e.g., Kershaw et al. [1]. However, knowledge of the uncertainty should, ideally, accompany each parametric map in DCE-
MRI. For this purpose, explicit equations for the uncertainty are preferred since they do not require time-consuming multiple refitting of models to the data. The aim of 
this work was to develop and investigate a linear multivariate error propagation method applicable to number of different and complex sources of uncertainty.  

Method 
Ideally, at sufficient SNR, magnitude MR images show normally distributed and temporally uncor-
related noise over the image series collected in a DCE-MRI experiment. Thus, it is optimal [2] to use 
the ordinary least squares (OLS) estimator to find the pharmacokinetic (PK) parameters p. However, 
a combined signal and pharmacokinetic model, f, depends on other parameters than p, e.g., the 
arterial input function (AIF), baseline signal (S0), baseline T1 (T10), contrast agent relaxivity, flip 
angle, etc., and all of these are associated with a given uncertainty. Let these parameters be denoted 
q̂ and let the measured values of the time curve in a voxel be Si. The OLS estimate p̂ of p is then 
given by       
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where ti denotes sampling time-points. A linear approximation can be used to find for the covariance 
of p̂ if the noise in p̂ and q̂  are sufficiently small and if the noise in Si and q̂ are independent. The 
covariance is given by 
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where 2ˆSσ is an estimate of the variance of the noise in the signal Si, ( ) 1ˆ ˆ ˆ ˆT T−− =p p p pJ J J J , 
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simulated uncertainties for the spoiled gradient echo sequence and the extended Tofts model [3]. 
Settings used in the simulation were TR/TE = 4/1.79 ms, flip angle = 20°, total duration/temporal 
resolution = 424/2.65 s, the transfer constant Ktrans = 0.15 min-1, extracellular extravascular volume 
fraction ve = 0.30, and the blood plasma volume fraction vp = 0.04. Four different sources of 
uncertainty were investigated by adding noise to Si, S0, T10, and by introducing a random error in the 
AIF peak and tail amplitudes. All noise sources were normally distributed with zero mean. The two 
variables that introduced errors in the AIF were independent. In the Monte Carlo simulation, 10 000 
repeated fits, at each noise level, were performed to find the simulated coefficient of variation (CV) 
of p̂ . For each simulation, Eq. (2) was evaluated to yield an estimated CV of p̂ . When evaluating Eq. 

(2), 2ˆSσ was found from the residuals of the fit, while the true covariances of the AIF, S0 and T10 were 
used. The proposed method was also tested on real data, acquired with the same imaging settings as 
in the simulation. The variances of S0 and T10 were found from 20 baseline images and the standard 
error from the calculation of T10. The covariance of the AIF was extracted from 10 measured AIFs.        
 
Results 
Figure 1 shows the results of the Monte Carlo simulation and the uncertainty estimation. The agree-
ment was in general good but at high noise levels deviations are apparent especially for noise in the 
baseline signal (b) and in the baseline T10 value (c). Furthermore, the precision tended to deteriorate 
at high noise levels. Figure 2 (a) and (b) show a Ktrans map and a map of the standard deviation in 
Ktrans, respectively. In Figure 2 (c) and (d), the CVs of Ktrans, ve, and vp in the two pixels indicated in 
(a) are displayed.  

   
Discussion and conclusions 
The Monte Carlo simulations indicate that Eq. (2) accurately predicts the CV of the estimated 
parameters at moderate noise levels also for complicated sources of uncertainty such as the AIF. That 
Eq. (2) is limited to moderate noise was expected from the linear approximation. The example on 
real data shown in Figure 2 demonstrates that spatially resolved maps of uncertainty subdivided by origin are feasible in vivo.    
 
[1]  Kershaw, L. E., Cheng, H.-L. M. Magnetic Resonance in Medicine 2010, 64, 1772-80. 
[2]  Seber, G. A. F., Wild, C. J. Nonlinear regression; Wiley: New York, 1989. 
[3]  Tofts, P. S. Journal of Magnetic Resonance Imaging 1997, 7, 91-101.  

Figure 2: (a) Ktrans map. (b) Map of standard deviation of
Ktrans. (c) CV of a voxel indicated in (a). (d) CV of a
voxel indicated in (a). The CVs in (c) and (d) are 
subdivided to show the contributions from each source of 
uncertainty to the total variance. 

Figure 1: Solid line represents Monte Carlo simulated CV
and dashed line is estimated CV using Eq. (2). The error
bars represent one standard deviation in estimated CV. CV
of PK parameters due to noise in Si (a), noise in S0 (b),
noise in T10 (c), and errors in the AIF amplitude (d).  
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