

REPRODUCIBILITY OF DYNAMIC CONTRAST-ENHANCED MRI PERFUSION PARAMETERS ON VARIOUS COMPUTER AIDED DIAGNOSIS WORKSTATIONS: TAKING A PEEK INTO THE BLACK BOX.

Tobias Heye¹, Matthew Davenport², Jeff Horvath¹, Sebastian Feuerlein¹, Steven Breault¹, Mustafa Bashir¹, Elmar M. Merkle¹, and Daniel T. Boll¹

¹Department of Radiology, Duke University Medical Center, Durham, NC, United States, ²Department of Radiology, University of Michigan Health System, Ann Arbor, MI, United States

Background: Assessment of tissue perfusion by means of model-based dynamic contrast-enhanced MRI (DCE-MRI) with derivation of quantitative (K_{trans} , k_{ep} , v_e) and semi-quantitative (iAUGC) pharmacokinetic (pk) parameters was introduced 20 years ago¹. Since then, the potential of this concept to serve as a non-invasive biomarker has been shown by various preclinical and clinical studies²⁻⁴. Many efforts are currently underway to establish the accuracy and precision of this approach to enable comparison of pk parameters across imaging platforms, clinical sites and time⁵. Although many factors contributing to overall measurement error have been identified, the effect of commercially available DCE-MRI post-processing solutions on pk measurement derivation has yet to be defined.

Purpose: To test the reproducibility of model-derived quantitative and semi-quantitative pk parameters between various commercially available post-processing solutions for DCE-MRI.

Material and Methods: Uterine fibroids were considered as perfusion model because lesions are well delineated and reside in a low motion environment. The 15 largest uterine fibroids in 15 randomly selected female patients (mean age 44 years, range 28-60 years) were defined as the study group. All DCE-MRI studies were performed at 1.5T (Avanto, Siemens, Erlangen, Germany), using variable flip angle T1 mapping (flip angles: 2, 8, and 20 degrees) and a 4D, time resolved MR angiography sequence with interleaved stochastic trajectories (TWIST) after the injection of 0.1 mmol/kg gadobenate dimeglumine (Bracco Diagnostics, Princeton, NJ). DCE-MRI studies were post-processed on four unique commercially available workstations using a Tofts model paradigm: Tissue4D™ (Siemens, Erlangen, Germany), DynaCAD™ (Invivo, Gainesville, Florida, USA), Aegis™ (Sentinelle Medical, Toronto, Ontario, Canada) and CADvue™ (iCAD, Inc. Nashua, NH, USA). Subject-related settings for DCE-MRI post-processing (e.g., weight, contrast type & volume, T1 mapping, contrast arrival time, arterial input function [AIF]) were specified if requested by the software. If T1 mapping was not an available parameter (DynaCAD™, Aegis™) an average T1 time of 1043 ms was used based on T1 map calculations from all datasets. Five readers prospectively measured K_{trans} , k_{ep} , v_e and iAUGC by placing two unique regions of interest (ROI), user defined vs. targeted placement) within a single previously selected uterine fibroid. Measurement was done on each workstation in random order and repeated 3 times for each study, resulting in 7200 data points. Mean comparison (ANOVA),

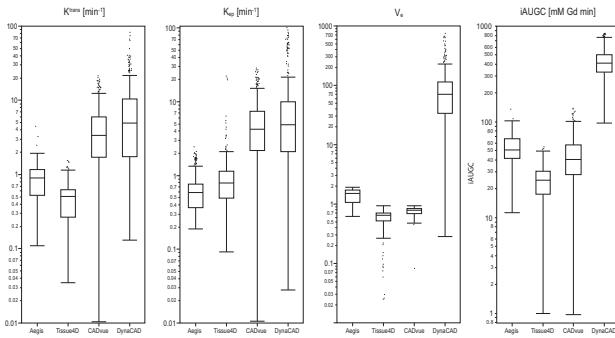


Figure 1: Median comparison of raw pk output by workstation

intraclass-correlation coefficient (ICC), root mean square coefficient of variation (RMSCoV) to estimate within subject coefficient of variation (wCV) and Bland-Altman limits of agreement were calculated.

Results: Initial median comparison (Figure 1) revealed a difference of pk data output from two workstations by a magnitude of 10 ($CADvue$, K_{trans} , K_{ep} , $DynaCAD$, K_{trans} , K_{ep} , V_e) or 100 ($DynaCAD$, V_e) compared to the other. Figure 2 demonstrates the wCV for each workstation comparison by pk parameter (range: 25.1 to 74.1%, calculated by RMSCoV). Figure 3 demonstrates Bland-Altman limits of agreement for each workstation comparison by pk output following rescaling to account for magnitude differences in pk expression between workstations. Table 1 illustrates between which workstation combinations there was no significant difference for each rescaled pk parameter. ICCs showed a strong correlation between readers significantly >0.9 ($p<0.05$; range 0.95-0.98). Pharmacokinetic measurements were not significantly different between the two ROI methods ($p>0.05$; mean ICC 0.85; range 0.58-0.95). The range of ICCs for each workstation comparison by pk parameter were: K_{trans} 0.33-0.68, k_{ep} 0.02-0.81, V_e -0.03-0.72, and iAUGC 0.47-0.78.

Conclusion: There is substantial variability for DCE-MRI pharmacokinetic parameters (K_{trans} , k_{ep} , V_e , iAUGC) across different commercially available DCE-MRI post-processing solutions. Although the Tofts and Kermode model is fairly standardized⁶, there are many parameters (T1 map, AIF type, subject specific data, model goodness of fit)⁷ that can affect the pk output. If DCE-MRI is to succeed as a widely incorporated biomarker, the industry must agree on a post-processing standard.

References:

1. Tofts PS, et al. *Magnetic resonance in medicine*. 1991;17(2):357-67
2. Ah-See ML, et al. *Clinical cancer research*. 2008;14(20):6580-9
3. Hawighorst H, et al. *Clinical cancer research*. 1998;4(10):2305-12
4. Zahra MA, et al. *Lancet Oncol*. 2007;8(1):63-74
5. QIBA. Profile: DCE MRI Quantification Version 1.0. Quantitative Imaging Biomarkers Alliance [Internet]. 2011.
6. Tofts PS, et al. *Journal of magnetic resonance imaging*. 1999;10(3):223-32
7. Di Giovanni P, et al. *Phys Med Biol*. 2010;55(1):121-32

Table 1: Workstation combinations producing no significant difference in output by pk parameter

pk parameter	workstation combination
K_{trans}	$Aegis$ ™ - $DynaCAD$ ™
	$CADvue$ ™, $Tissue4D$ ™
	$Tissue4D$ ™ - $DynaCAD$ ™
k_{ep}	$Aegis$ ™ - $CADvue$ ™
V_e	$DynaCAD$ ™ - $CADvue$ ™
iAUGC	$DynaCAD$ ™ - $CADvue$ ™

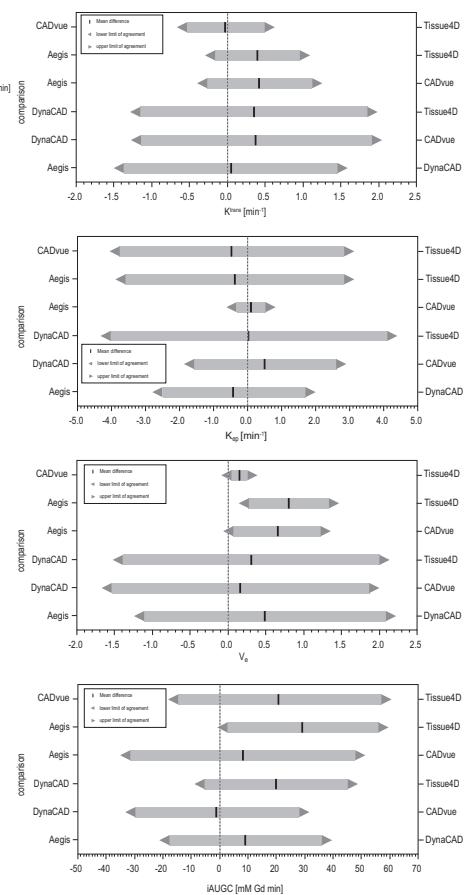


Figure 2: wCV for each workstation combination by pk parameter

Figure 3: Bland-Altman mean difference and limits of agreement for each workstation comparison by pk output