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Fig. 2. A flow chart of the proposed DSLR algorithm for SEMAC 

Fig. 3. Comparison of knee images reconstructed using (a) SEMAC, (b) SEMAC with the
conventional two-step noise reduction, and (c) with the proposed DSLR algorithm. 
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Introduction: Metal-induced field inhomogeneity is one of the major concerns in magnetic resonance imaging near metallic implants. Slice encoding for metal artifact 
correction (SEMAC) [1] is an effective way to correct severe metal artifacts by employing additional z-phase encoding steps for each excited slice against metal-induced 
field inhomogeneity and view angle tilting (VAT). Despite the advantages of metal artifact correction, since noisy resolved pixels are included in image reconstruction, 
SEMAC suffers from noise amplification. SEMAC with noise reduction [2], which employs a two-step approach (rank-1 approximation along the coil dimension 
followed by soft thresholding in the slice direction), does not consider noise correlation of coils and results in a direct tradeoff between image accuracy and de-noising. 
Thus, to further expedite noise reduction in SEMAC, in this work we develop a novel image de-noising algorithm that exploits 1) low-rank approximation using strong 
correlation of pixels (x-z) in the slice direction (t), 2) Best Linear Unbiased Estimator (BLUE) image combination in the coil direction with noise correlation, and 3) 
recovery of distorted slice profile using the sparsity of signals in the slice direction with orthogonal matching pursuit (OMP). 
Theory: A flow chart of the proposed, image de-noising using sparsity and low-rank approximation (DSLR) is shown in Figure 2. The algorithm consists of the two 
steps of noise pre-processing (low-rank approximation and BLUE) followed by optimal image reconstruction using the sparsity in the slice direction (OMP). 
I. Low-rank approximation: In SEMAC data acquisition (x(or y)z-t), strong correlation of pixels (in x-z) exists in the slice direction (t) for each coil. The pixels in the 
x-t dimension (colored lines in Fig. 2) are arranged into a single vector: P୨ = [ℓ൫x୨, t଴൯, … , ℓ൫x୨, t୬൯]ୌwhere x୨ is the jth pixel in the z direction, and t୬ is the nth pixel 
in the t direction. To exploit the correlation of pixels (in x-z) along the t direction, image pixels in spatio-temporal dimension (xz-t) are rearranged into a single matrix: L = [P଴, … , P୫ିଵ]ୌwhere the rows of L correspond to the t direction and the columns of L to the z direction (see Fig. 1a). The zeros in the L matrix are removed and the 
high signal-to-noise ratio (SNR) pixels are shifted to the center, yielding another permuted matrix Lp (see Fig. 1b). Applying a 1-D Fourier transform along the z 
direction, Fig. 1c shows that signals are strong in the center. Singular value decomposition (see Fig. 1d) of the Lp followed by the low-rank approximation is performed 
by minimizing the following constrained optimization problem: minฮFL୮ − Yฮଶ	s. t. rank൫L୮൯ ≤ r, where F is a Fourier transformation operator and Y is the measured 
data. With the nuclear norm, this problem is reduced to minฮFL୮ − Yฮଶ + λฮL୮ฮ∗. II. 
Best Linear Unbiased Estimator (BLUE): Once noises are pre-processed in the xz-t 
dimension, SEMAC data is combined in the coil direction using BLUE with noise 
covariance of coils [4]. BLUE reconstruction is performed using L෨୆୐୙୉ = (CୌψିଵC)ିଵCୌψିଵ ∙ L෨ , where ψ is the noise covariance matrix, C is the 
coil sensitivity, and L෨  is the solution of the optimization problem in the low-rank 
approximation. Given the explicit knowledge of noise covariance and coil sensitivity 
from the pre-scan, BLUE reconstruction enhances noise performance in the coil 
direction. III. Orthogonal Matching Pursuit (OMP): As SEMAC data undergo the 
initial two pre-processing steps (low-rank approximation followed by BLUE), images 
are rarely contaminated by noises and highly sparse in the slice direction. That is, 
image signals, which result from metal-induced field inhomogeneity, are disseminated 
to a limited number of resolved data elements. Sparse distorted slice profiles in 
SEMAC are recovered using compressive sensing algorithm [5] by solving the 
following constrained optimization problem: minฮF୸L෨୆୐୙୉ฮଵ	s. t. ฮFL෨୆୐୙୉ − Yฮଶ ≤ ℇ 
where L෨୆୐୙୉ indicated the noise-suppressed SEMAC images. The l1 minimization is 
performed using the OMP algorithm [6]: It starts from an “empty model”, builds up a 
signal model, and picks up an atom at a time, which adds to the signal model the most 
important new atom. This iterative algorithm is converged until the maximum residual 
signal in x-f domain reaches the noise level. The flowchart of this OMP algorithm is 
illustrated in the dash box.  
Materials and Methods: To investigate the utility of the proposed algorithm, in vivo 
knee data is fully acquired in a volunteer with knee arthroplastics (pedicle screws) 
using 2D SEMAC imaging at a 1.5 T whole-body MR scanner (Magnetom Avanto, 
Siemens Medical Solutions, Erlangen, Germany). 640 noise samples are acquired 
separately before actual imaging data acquisition. The imaging parameters are: matrix, 
320x320; FOV, 22 cm; z-phase encoding steps for SEMAC, 8; thickness, 3 mm; # of 
coil, 8; flip angle, 150°; effective TE, 36 ms; TR, 3500 ms; # of slices, 24; and 
imaging time, 5.7 min. 
Results: Fig. 3 compares three images reconstructed using SEMAC [1], SEMAC with 
the conventional two-step noise reduction [2], and the proposed DSLR algorithm. The 
proposed DSLR algorithm outperforms two methods and 
produces 119% SNR better than SEMAC and 89% SNR better 
than SEMAC with the conventional two-step noise reduction. 
Conclusion: We successfully demonstrated that the proposed, 
novel DSLR algorithm for SEMAC, if compared with 
conventional de-noising methods, substantially improves SNR 
and reduces artifacts.  
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