

Assessing Breast Cancer Angiogenesis *In Vivo*: Which MRI Biomarkers are Relevant?

Eugene Kim¹, Jana Cebulla², B. Douglas Ward³, Kevin Rhie², Jiayang Zhang², and Arvind P. Pathak^{2,4}

¹The Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, United States, ²The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, ³Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States, ⁴The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center Program

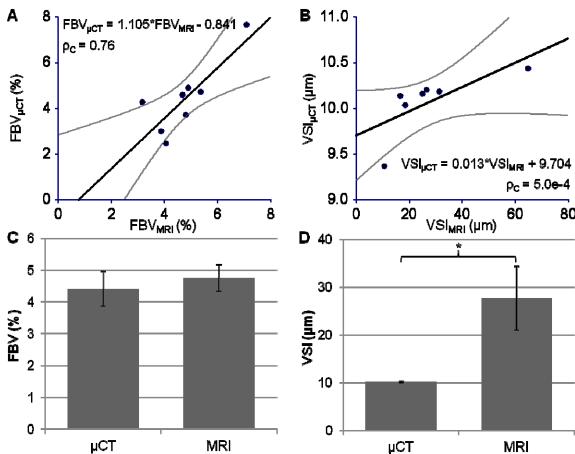

INTRODUCTION: Angiogenesis is a hallmark of breast cancer and essential for tumor invasion and metastasis [1]. Although various anti-angiogenic drugs have been developed, none are currently approved for treating breast cancer [2]. Therefore, there is a crucial need for noninvasive biomarkers of breast cancer angiogenesis to evaluate the efficacy of new anti-angiogenic therapies *in vivo*. Susceptibility contrast MRI is a non-invasive, *in vivo* technique capable of providing quantitative information about tumor angiogenesis [3]. The purpose of this study was to determine how accurately *in vivo* steady-state susceptibility contrast (SSC)-MRI biomarkers of angiogenesis in an orthotopic human breast cancer model predicted the appropriate 3D vascular correlates derived from high-resolution micro-CT (μ CT).

Table 1 SSC-MRI biomarkers and LOOCV analysis

μ CT parameter	<i>In vivo</i> MRI parameter	LOOCV: NRMSE
Fractional blood volume (FBV_{μ CT})	ΔR_2	0.196
	FBV_{MRI}^* [4]	$\frac{3}{4\pi} \frac{\Delta R_2^*}{\gamma \Delta B_0}$ 0.263
Vessel radius (VSI_{μ CT})	R	0.336
	VSI_{MRI}^* [4]	$0.425 \left(\frac{D}{\gamma \Delta B_0} \right)^{1/2} \left(\frac{\Delta R_2^*}{\Delta R_2} \right)^{3/2}$ 0.453
Vessel density	Q [5]	$\frac{\Delta R_2}{(\Delta R_2^*)^{2/3}}$ 0.187
	N^* [5]	$\frac{Q^3}{D}$ 0.097

*: "Absolute" MRI parameter; **BOLD**: indicates smaller NRMSE

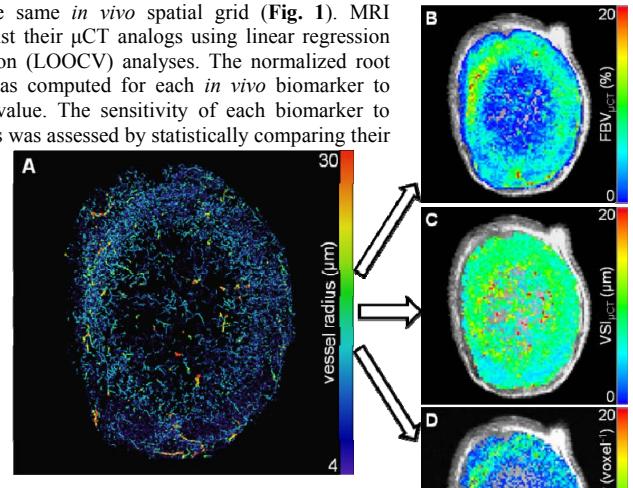

significant correlations ($p<0.05$) with their μ CT analogs. According to their respective concordance correlation coefficients (ρ_c) [6], FBV_{MRI} and FBV_{μ CT} were in good agreement whereas VSI_{MRI} and VSI_{μ CT} were not (Fig. 2A-B). This was also reflected in the linear regression models: the intercept and slope of the FBV model were not significantly different from zero and one, respectively, whereas those of the VSI model were ($p<0.05$). In addition, the median tumor FBV values measured from the two imaging modalities were not significantly different, whereas the VSI values were (Fig. 2C-D). Similar analyses could not be performed for vessel density because N is a measure of 2D histological vessel density (per unit area), while the μ CT vessel density is a 3D measurement (per voxel). Based on LOOCV analysis, ΔR_2 was a better predictor of FBV_{μ CT} than FBV_{MRI} ; R was a better predictor of VSI_{μ CT} than VSI_{MRI} ; and N was a better predictor of vessel density than Q (Table 1). VSI_{μ CT}, VSI_{MRI} and R all indicated that the median tumor vessel radius increased significantly from PIW 3 to PIW 5. In contrast, all three measures of vessel density (μ CT vessel density, N and Q) decreased significantly from PIW 3 to PIW 5. Neither FBV_{μ CT} nor FBV_{MRI} were significantly different between the two time points, but ΔR_2 was significantly lower at PIW 5 than at PIW 3.

Fig. 2 Scatter plots of μ CT- vs. MRI-measured FBV (A) and VSI (B). Black lines: linear regression model, gray lines: 95% confidence interval. Bar graphs (error bars indicate standard error) of median tumor FBV (C) and VSI (D). * $p<0.05$

METHODS: Human MDA-MB-231 breast cancer cells were inoculated into the mammary fat pad of athymic NCr-*nu/nu* mice mice. Tumors were imaged *in vivo* on a 9.4 T horizontal bore scanner (Bruker BioSpin) with SSC and diffusion-weighted MRI at post-inoculation week (PIW) 3 ($n=10$) and PIW 5 ($n=7$). SSC MRI involved multi-echo gradient echo (GE) and spin echo (SE) scans before and after an injection of ferumoxide (25mg Fe/kg body weight, AMAG). *In vivo* images were acquired with in-plane resolution=100 μ m and slice thickness=1 mm. Whole tumor *ex vivo* 3D μ CT angiography was conducted by Numira Biosciences on a subset of excised tumors (PIW 3 $n=5$, PIW 5 $n=3$) at 8 μ m isotropic resolution. *In vivo* biomarkers of tumor fractional blood volume, vessel radius and vessel density were computed on a voxel-wise basis (Table 1), and corresponding maps were computed from the segmented μ CT-derived vasculature on the same *in vivo* spatial grid (Fig. 1). MRI biomarkers were validated against their μ CT analogs using linear regression and leave-one-out cross-validation (LOOCV) analyses. The normalized root mean square error (NRMSE) was computed for each *in vivo* biomarker to measure its relative predictive value. The sensitivity of each biomarker to temporal changes in angiogenesis was assessed by statistically comparing their values at PIW 3 vs. PIW 5 using a Mann-Whitney U test.

RESULTS: With the exception of VSI_{MRI} , all *in vivo* MRI biomarkers displayed

Fig. 1 Micro-CT vascular morphology and parametric maps: (A) Volume rendering of the segmented vasculature from a 1 mm-thick slice of a PIW 5 breast cancer xenograft. Vessels are color-coded by radius. (B) FBV_{μ CT}, (C) VSI_{μ CT} and (D) vessel density maps computed from (A), overlaid on the raw SE image.

DISCUSSION: The MRI biomarkers examined here can be broadly categorized as: (i) "absolute" biomarkers (FBV_{MRI} , VSI_{MRI} and N) that directly measure a vascular parameter (e.g., VSI_{MRI} measures vessel radius in μ m) or (ii) "relative" biomarkers (ΔR_2 , R and Q) whose values are proportional to a vascular parameter (e.g., $R \propto$ vessel radius). The LOOCV results suggest that the "relative" biomarkers were better predictors of the μ CT-measured 3D vascular morphology, with the exception of Q and vessel density. However, Q still exhibited a lower NRMSE than any blood volume or vessel size biomarker. FBV_{MRI} was found to be in good agreement with FBV_{μ CT}. However, since $FBV_{MRI} \propto \Delta R_2^*$, the two may be considered equivalent if one is interested in global blood volume changes (e.g., in response to therapy). ΔR_2 (microvascular blood volume) decreased significantly between PIW 3 and PIW 5 while ΔR_2^* (global blood volume) did not. This suggests the change in the angiogenic phenotype that occurred between these time points primarily involved the microvasculature. Thus, ΔR_2 may be important for early detection of therapeutic effects on angiogenic sprouting. VSI_{MRI} has been shown to overestimate the true vessel radius [4], and this is corroborated by our results. Collectively, the results from this study indicate that "relative" SSC-MRI biomarkers are better predictors of μ CT-derived vessel morphology than "absolute" biomarkers, which require measuring the apparent diffusion coefficient and changes in the bulk magnetic susceptibility of blood. Additionally, the ease of computation of "relative" SSC-MRI parameters makes them promising candidates for noninvasive, *in vivo* biomarkers of breast cancer angiogenesis.

REFERENCES: 1. Weidner, *Cancer Treat Res*, 83:265-301, 1996. 2. Folkman, *Nat Rev Drug Discov*, 6(4):273-86, 2007. 3. Pathak, *Wiley Interdiscip Rev Nanomed Nanobiotechnol*, 1(1):84-97, 2008. 4. Tropriès et al. *Magn Reson Med*, 45(3):397-408, 2001. 5. Jensen and Chandra, *Magn Reson Med*, 44(2):224-30. 6. Lin, *Biometrics*, 45(1):255-268, 1989.

ACKNOWLEDGEMENTS: Research was supported by Komen for the Cure Grant KG090640.