
Introduction: The clinical need for high spatial and temporal resolution in time-resolved MR applications often necessitates image reconstruction from incomplete 
datasets because the total scan time is limited due to contrast passage or breath hold requirements. The advent of compressed sensing (CS) [1] provided a new sub-

Nyquist sampling requirement for images accepting a sparse representation in some basis. However, limited spatial sparsity of MR images affords only moderate 

acceleration factors (2-4) before CS reconstruction introduces image blurring / blocky artifacts.  A better sparsification can be achieved by exploiting spatio-temporal 
correlations in the time series as shown in [2-4]. In these methods the underdetermined image reconstruction problem is regularized by making assumptions about the 

nature of temporal waveforms. The accuracy of reconstruction and achievable acceleration then depends on the validity of these assumptions in practice.  In particular, 

k-t PCA [2]  postulates that temporal behavior of different image regions can be described by a linear combination of several principal components (PCs), which are 
learned from low-resolution training data.  k-t PCA was validated in cardiac perfusion imaging [2,5]. However, its utility in contrast-enhanced (CE) intracranial 

angiography remains to be investigated because in certain disease, e.g. intracranial aneurysms,  small regions of pathological anatomy exhibit temporal behavior that is 

radically different from the rest of vasculature and cannot be described well by the chosen PCs. Recently, a new model-based approach (MOCCA) [6] was proposed for 
quantitative MRI. MOCCA relies on linearized representation of non-linear operators mapping between image space and space of MR parameters. Such linearization is 

obtained by applying PCA or K-SVD to compress a set of analytical curves derived from a theoretical signal model equation. MOCCA was shown to be robust to local 

misrepresentation of the image series behavior by the theoretical model.  In this work, we modify the MOCCA technique to be applicable to CE angiography, where 
temporal signal behavior has to be learned from the available data due to lack of theoretical model. 

Theory: Here, we restate the ideas behind MOCCA approach in the context of its adaptation to CE angiography. The temporal image series reconstruction solves the  

linear system       , where   is the encoding matrix and    is the measured k-space data for all time frames.  In accelerated imaging,   is ill-conditioned and requires 
a regularization.  As in [2], we assume that temporal behavior of most pixels can be approximated well by a linear combination of several waveforms. However, 

MOCCA allows for deviations from the chosen model as follows. Let      be the set of chosen representative waveforms that span a linear subspace   of waveforms 

satisfying the model assumption. Let   be a synthesis operator mapping a set of coefficients       to a linear combination       
  ;  and    be its adjoint analysis 

operator yielding coefficients of projection of an arbitrary waveform   onto  ,               .  If the model assumption is satisfied for a given pixel, then its 

temporal waveform   is "close" to  , so       .  Hence, reconstruction is regularized 
by the chosen temporal behavior model, allowing for deviations in a small number of pixels 

through the use of hybrid       norm:                  
                     .  

Methods: The temporal behavior model is constructed from a low resolution training data 

    reconstructed a fully sampled central region of k-space.   The     series is reformatted 

into a        matrix, where    is the  number of pixels in each low resolution image and 

    is the number of time frames.  An SVD decomposition is performed on this matrix to 

learn its PCs, of which the first three are chosen as the representative waveforms     .  It 
is impractical to choose more  PCs as their oscillatory nature results in noise amplification 
in reconstructed images.  Minimization is implemented via iteratively reweighted least 

squares algorithm [7] with 10 reweightings. The balance between sparsity promoting 

properties of   -norm and noise optimality of   -norm is achieved through the use of hybrid 

norm                      
     , with the cut-off parameter   chosen as           

in the first reweighting and gradually decreased in the subsequent ones. 
The proposed method was validated in a CE exam from an intracranial aneurysms patient 

conducted according to the IRB at our institution.  The patient was scanned on a 3.0 T 

clinical scanner (Discovery TM MR750, GE Healthcare, Waukesha, WI) with an 8-channel 

head coil using a hybrid radial (in-plane)/Cartesian 
(through-plane) acquisition during a contrast injection.  

The scan parameters were TE/TR=1.5/4 ms, FA=25o, 

BW=125 kHz, 20 slices, voxel size 0.86x0.86x2 mm3.  
The data were reconstructed from 15 radial projections 

per slice per 1.2 s time frame (acceleration factor R=27) 

using iterative SENSE [9], k-t PCA [2] and the 

proposed method with       -norm (MOCCA 1) and   -

norm (MOCCA 2) in the penalty term.  Reconstructed 
images were compared for image quality and temporal 

waveform fidelity. 

Results: Images in Fig. 1 show limited maximum 
intensity projections of two early time frames for the 
four reconstruction techniques. Note that while all three 

constrained reconstruction techniques provide good spatial 

resolution and adequate SNR,  the algorithms relying on 

  -norm regularization exhibit premature enhancement of some vessels.  This observation is further confirmed by examining temporal waveforms of the aneurysm and 

its feeding artery in Fig. 2. 

Conclusions: The presented extension of the MOCCA approach with learned temporal behavior from low-resolution dynamic images is a good fit to highly 

accelerated CE angiography.  The modified MOCCA was shown to produce reliable results in distinguishing of different filling patterns of pathological vasculature due 
to the methods's robustness to model misrepresentation. 
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Figure 1. Time frames at 2.4 s (top row) and 7.2 s (bottom row) after the 

beginning of examination. 

Figure 2. Waveforms of the ROIs indicated by arrows in Fig. 1 for SENSE (dashed), MOCCA 1 (solid), 

MOCCA 2 (dotted), k-t PCA (dash-dot). 
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