Direct Diffusion Tensor Estimation Using Joint Sparsity Constraint Without Image Reconstruction
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INTRODUCTION:

Diffusion tensor imaging (DTI) provides a non-invasive method for in vivo evaluation of tissue water mobility [1]. In practice, DTI suffers from low
SNR and long acquisition time. To accelerate the imaging speed, there are mainly two strategies to obtain diffusion tensor D from undersampled k-
space. The first one is to reconstruct all diffusion weighted images (DWI) first and then estimate D by conventional least squares fitting. Compressed
sensing (CS) has been applied to reconstruct all DW images under the total variation constraint [2]. However, too many unknowns need to be solved
and the CS reconstruction error may lead to fitting errors in diffusion tensors. The second strategy is the model-based (MB) method which fits
diffusion tensors directly and nonlinearly to the acquired data based on the data consistency in the DTI model without image reconstruction [3]. This
strategy is sensitive to the initial diffusion tensor, because the measured data correspond to the continuous Fourier transform whereas the estimation
is discrete[4]. In this work, we propose a novel model-based method using a joint sparsity constraint [5] (MB-JSC). This novel method not only has
the benefits of fewer unknowns and no error propagation in MB method, but also utilizes the joint sparsity penalty to reduce the number of
measurements and improve robustness to initial diffusion tensor.

THEORY AND METHOD:
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The j-th diffusion-weighted image f; can be represented asf; =1 e , where D is the diffusion tensor, I, is reference image, b is the diffusion

weighting factor, g; is the diffusion encoding directional vector, and ¢, is the image phase. Since the diffusion weightings only modulate the

intensity of each diffusion-weighted image, f; ’s fit the joint sparsity model , that exploit both intra- and inter-signal correlation structures in
distributed compressed sensing (DCS) theory [5]. It means the diffusion-weighted images are not only transform-sparse, but also share the common
sparse support. Then the direct reconstruction of diffusion
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tensor from undersampled k-space using joint sparsity
constraint can be formulated as
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where d; is the measured k-space data for the j-th
diffusion direction, P is undersampling mask, F is Fourier
transform, C is the sparse coefficients matrix with size N
(# image pixel) x J (# diffusion direction), is the
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mixed L,-L, norm of matrix, which applies the L, norm Fig.1 The FA maps

to rows of C (to promote nonsparsity) and then applying reconstructed using
the L1 norm to the resulting vector (to promote sparsity). different methods.
Y is the sparsifying transform and represents finite The top row is for
difference in our work. The experiments were conducted MB, the bottom

on a 7T Bruker Scanner (Bruker BioSpin). A spin echo row is for MB-

diffusion tensor imaging (SE-DTI) was performed on an IsC.
adult SD rat to acquire one B0 image and six diffusion-
weighted images, all of size 256x256. TR/TE = 1500/29 ms, b value = 1000 s/mm2, NEX=10. Variable-density random undersampling with net
reduction factors R=2, 3 and 4 was applied on the phase encoding direction. Fractional anisotropy (FA) map and mean diffusivity (MD) calculated
from the reconstruction of full data were used as the gold standard. In our work, I, was reconstructed separately and then used to estimate D

RESULTS AND DISCUSSION:

Fig.1 shows the FA maps estimated Tab.1 Quantified performance of different methods.
using MB and MB-JSC methods MB MB-JSC
with R=2, 3 and 4. We can see that RMSE FA MD FA MD

the FA map estimated using the R=2 0.0245 | 5.09e-5 0.0322 5.27e-5
proposed MB-JSC at R=2 is less R=3 0.0447 | 8.15e-5 0.0422 | 7.02¢-5
noisy than that from the full data R=4 0.0546 | 9.28e-5 0.0489 8.0le-5
and MB method. When R= 3, the
artifacts show up in the map from MB, but are negligible in that from MB-JSC. When the k-
space was heavily undersampled with R=4, the FA map estimated using the MB-JSC method
still only shows negligible artifacts while the MB method exhibits severe artifacts (indicated by
red boxes). The improvement of MB-JSC over MB is also demonstrated in the root-mean-squared errors (RMSE) of FA and MD listed in Table 1.
The estimated maps using a random initial D with R=2 are shown in Fig.2. We can see the MB method is sensitive to the initial D, which is
consistent with the observations in [3]. In contrast, MB-JSC doesn’t exhibit large variations with different initial D. It suggests that the introduction
of the joint sparsity constraint can improve the robustness of model-based methods.

CONCLUSION:

We propose a novel model-based method with joint sparse constraint for estimating the diffusion tensor directly from undersampled k-space data.
Experimental results demonstrate that the proposed method can improve the estimation accuracy of the model-based method. The method has
potential to be applied in biological tissue characterization, such as neural, muscle and heart.
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Fig. 2 FA maps using random initial D with R=2.
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