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INTRODUCTION:  
Diffusion tensor imaging (DTI) provides a non-invasive method for in vivo evaluation of tissue water mobility [1]. In practice, DTI suffers from low 
SNR and long acquisition time. To accelerate the imaging speed, there are mainly two strategies to obtain diffusion tensor D from undersampled k-
space. The first one is to reconstruct all diffusion weighted images (DWI) first and then estimate D by conventional least squares fitting. Compressed 
sensing (CS) has been applied to reconstruct all DW images under the total variation constraint [2]. However, too many unknowns need to be solved 
and the CS reconstruction error may lead to fitting errors in diffusion tensors. The second strategy is the model-based (MB) method which fits 
diffusion tensors directly and nonlinearly to the acquired data based on the data consistency in the DTI model without image reconstruction [3]. This 
strategy is sensitive to the initial diffusion tensor, because the measured data correspond to the continuous Fourier transform whereas the estimation 
is discrete[4]. In this work, we propose a novel model-based method using a joint sparsity constraint [5] (MB-JSC). This novel method not only has 
the benefits of fewer unknowns and no error propagation in MB method, but also utilizes the joint sparsity penalty to reduce the number of 
measurements and improve robustness to initial diffusion tensor.  
THEORY AND METHOD:  

The j-th diffusion-weighted image fj can be represented as 0
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weighting factor, gj is the diffusion encoding directional vector, and jφ is the image phase. Since the diffusion weightings only modulate the 
intensity of each diffusion-weighted image, fj ’s fit the joint sparsity model , that exploit both intra- and inter-signal correlation structures in 
distributed compressed sensing (DCS) theory [5]. It means the diffusion-weighted images are not only transform-sparse, but also share the common 
sparse support. Then the direct reconstruction of diffusion 
tensor from undersampled k-space using joint sparsity 
constraint can be formulated as  
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where dj is the measured k-space data for the j-th 
diffusion direction, P is undersampling mask, F is Fourier 
transform, C is the sparse coefficients matrix with size N 
(# image pixel) × J (# diffusion direction), 

1,2
is the 

mixed L1-L2 norm of matrix, which applies the L2 norm 
to rows of C (to promote nonsparsity) and then applying 
the L1 norm to the resulting vector (to promote sparsity). 
Ψ is the sparsifying transform and represents finite 
difference in our work. The experiments were conducted 
on a 7T Bruker Scanner (Bruker BioSpin). A spin echo 
diffusion tensor imaging (SE-DTI) was performed on an 
adult SD rat to acquire one B0 image and six diffusion-
weighted images, all of size 256×256. TR/TE = 1500/29 ms, b value = 1000 s/mm2, NEX=10. Variable-density random undersampling with net 
reduction factors R=2, 3 and 4 was applied on the phase encoding direction. Fractional anisotropy (FA) map and mean diffusivity (MD) calculated 
from the reconstruction of full data were used as the gold standard. In our work, I0 was reconstructed separately and then used to estimate D.  
RESULTS AND DISCUSSION: 
Fig.1 shows the FA maps estimated 
using MB and MB-JSC methods 
with R=2, 3 and 4. We can see that 
the FA map estimated using the 
proposed MB-JSC at R=2 is less 
noisy than that from the full data 
and MB method. When R= 3, the 
artifacts show up in the map from MB, but are negligible in that from MB-JSC. When the k-
space was heavily undersampled with R=4, the FA map estimated using the MB-JSC method 
still only shows negligible artifacts while the MB method exhibits severe artifacts (indicated by 
red boxes). The improvement of MB-JSC over MB is also demonstrated in the root-mean-squared errors (RMSE) of FA and MD listed in Table 1. 
The estimated maps using a random initial D with R=2 are shown in Fig.2. We can see the MB method is sensitive to the initial D, which is 
consistent with the observations in [3]. In contrast, MB-JSC doesn’t exhibit large variations with different initial D. It suggests that the introduction 
of the joint sparsity constraint can improve the robustness of model-based methods.  
CONCLUSION: 
We propose a novel model-based method with joint sparse constraint for estimating the diffusion tensor directly from undersampled k-space data. 
Experimental results demonstrate that the proposed method can improve the estimation accuracy of the model-based method. The method has 
potential to be applied in biological tissue characterization, such as neural, muscle and heart. 
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Fig. 2 FA maps using random initial D with R=2. 

Fig.1 The FA maps 
reconstructed using 
different methods. 
The top row is for 
MB, the bottom 
row is for MB-
JSC. 

Tab.1 Quantified performance of different methods. 
 MB MB-JSC 

RMSE FA MD FA MD 
R=2 0.0245 5.09e-5 0.0322 5.27e-5 
R=3 0.0447 8.15e-5 0.0422 7.02e-5 
R=4 0.0546 9.28e-5 0.0489 8.01e-5 
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