Retaining Polarization by exploiting reduced T1 relaxation of hyperpolarized spins at low field in solution

M. Van Criekinge¹, K. R. Keshari², D. Vigneron², and J. Kurhanewicz²

¹UCSF, San Francisco, CA, United States, ²UCSF

Introduction:

Techniques to retain highly polarized spins in solution via dynamic nuclear polarization (DNP) have enabled 13 C NMR and MR imaging studies with very high signal-to-noise in short acquisition times (1,2). An important consideration for performing hyperpolarized (HP) 13 C MR studies is matching the T_1 relaxation time of the HP 13 C labeled probe with the time scale of the metabolic process being investigated. For example, HP [1- 13 C]pyruvate has been very successful in measuring fast metabolic fluxes such as the flux of pyruvate to lactate catalyzed by LDH. However, extending [1- 13 C]pyruvate's T_1 relaxation time may allow improved visualization of HP TCA intermediates. In this study, the field dependence of solution state T_1 relaxation times of hyperpolarized [1- 13 C]pyruvate, between low field (< 0.1T) and 11.7T (125MHz) and 14.1T (150MHz), is exploited to retain higher amounts of residual polarization.

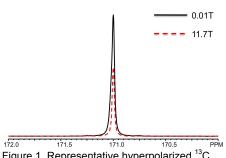


Figure 1. Representative hyperpolarized ¹³C spectra 90 secs after evolution in 0.01T (black) and 11.7T (red) magnetic field.

Experimental Methods:

Samples of $[1^{-13}C]$ pyruvate (Isotec) either neat or doped with a DOTA based Gd^{3+} complex and containing 15mM OX063 trityl radical (Oxford Instrument) and nearly identical in weight were polarized. After full solid-state build-up (SSbu) the samples were dissolved using a HypersenseTM DNP polarizer (Oxford Instrument) as described elsewhere (3). The dissolved samples were rapidly transferred to a high field NMR spectrometer, and either in the first case parked for 90 secs. in the stray field region on top of the NMR magnet ($\sim 0.01T$ for 11.7T and 0.05T for 14.1T) and in a second case positioned in the magnet center and waited 90 sec. before the start of acquisition. Both polarization and T_1 measurements were performed in 11.7T and 14.1T spectrometers (Varian Inc.). T_1 decay NMR data was acquired at 3 secs intervals applying a small tip angle ($< 8^\circ$) excitation pulse. Polarization measurements were calculated based on the thermal signal of the same dissolution sample after the completion of the T_1 decay acquisition while waiting a sufficient recycle delay (5 x T_1). T_1 relaxation times were estimated by performing a mono-exponential fit to the signal decay curve taking into account magnetization lost as a function of excitation. All Polarization and T_1 measurement data were collected at 37 \square .

Results and Discussion:

By evolving the hyperpolarized spins in low field, a dramatic increase in relaxation rate is indirectly observed as a 50% increase in residual polarization relative to the solution positioned inside the center of the high field as shown in *Figure 1*. Pre-polarized solutions were left 90 secs on top of both 11.7 and 14.1 T magnets in fields of 0.01T and 0.05T, and the residual polarization was subsequently measured in the bore of the magnet. The residual polarization observed for $[1-^{13}C]$ pyruvate was 31% and 26% at 0.01T and 0.05T, versus 18% and 13% at 11.7 and 14.1T, respectively

(Figure 2). The estimated T_1 relaxation times were 49.3 ± 1.6 secs, and 42.1 ± 0.3 secs at 11.7T, and 14.1T respectively for the pyruvate solutions. The field dependency of T_1 relaxation times is caused by increased chemical shift anisotropy (CSA) with field (eq. 1) and it is known that ^{13}C T_1 s for carbonyl carbons decrease

$$\frac{1}{T_1^{CSA}} = \frac{2}{15} \gamma_c^2 B_0^2 (\Delta \sigma)^2 \left(1 + \frac{\eta^2}{3} \right) \tau_c \qquad (1)$$

with increasing field strength (B_o^2) (4).

This study demonstrates the feasibility of dramatically reducing the loss of polarization of a HP ¹³C carbonyl labeled probe after dissolution by taking advantage of its longer T₁ relaxation time at low field (< 0.1T). Future studies include the

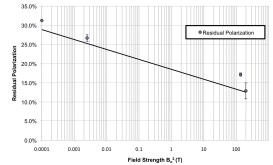


Figure 2. Plot of residual polarization as a function of squared field strength.

investigation of different time points and field strengths to optimize the low field strength necessary to preserve the hyperpolarized spins. For *in vivo studies*, it is possible that hyperpolarized spins could be allowed to evolve inside of animals at low field and subsequently transport them into the magnet at a later time to observe slower enzyme kinetics.

References

- 1. JH. Ardenkjaer-Larsen et al. Proc Natl Acad Sci USA 2003; 100:p10158
- 2. K. Golman et al. PNAS 2006; 103(30):11270-11275
- 3. S. J.Kohler et al., Magn. Reson. Med. (2007), 58, 65
- 4. C. Pattaroni and J. Lauterwein Mag. Res. Chem. 1987; 25:745-751

Acknowledgements

NIH R01EB007588 and useful conversations with Dr. James Tropp.