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Reliable metabolite quantification is the major goal of magnetic resonance spectroscopy (MRS). 
I think that all of us agree that “spectral quality” and “appropriate” data processing determine the 
resulting reliability of metabolite quantification. However, these terms are not well established. In 
this article I will present my viewpoint on “spectral quality” assessment and discuss a variety of 
factors that influence the quality of spectra. Secondly, I will focus on data analysis and discuss 
pros and cons of different approaches of metabolite quantification. Finally, I will present some 
examples of metabolite profiling in human and animal brains. 

I. Spectral quality 
Multiple spectral parameters have to be taken into account when assessing the overall spectral 
quality. An overview of these parameters is presented in Figure 1. 

 
Fig. 1  Overview of factors determining the spectral quality. 1H MR spectrum of the human brain (grey-matter-rich 
occipital lobe) acquired at 7T. STEAM (TE = 6 ms) with OVS and VAPOR water suppression, neither water signal 
removal nor baseline correction were applied. 

The signal-to-noise ratio (SNR) and the spectral resolution are commonly considered as major 
factors determining the spectral quality. But other factors, such as localization performance, 
water suppression and baseline distortions (Fig. 1), are equally important. The sections below 
list these factors and discuss how they depend on hardware, software and scanning protocols. 

Signal-to-noise ratio 
The integral signal intensity increases with B0 field, but despite optimal shimming the potential 
increase in SNR is partially offset by increased intrinsic signal linewidth [1-3]. The achieved 
SNR highly depends on the efficiency of B0 shimming [4-6] and on the type and performance of 
RF coils and localization sequences used [2,3,7,8]. Moreover, SNR depends on the detection 
sensitivity of the MR scanner and the noise figure of the receiver. In addition, precise 
adjustment of rephasing gradients in the localization sequence is very important, as even a 
small imbalance can cause substantial signal attenuation. Last but not least, subject motion 
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during the scan can significantly reduce the SNR and deteriorate the overall spectral quality, 
including SNR. 

Spectral resolution 
MRS benefits from increased field strength due to increased chemical shift dispersion [9-11]. 
With higher field strengths, it becomes increasingly important that B0 shimming is optimally 
performed in order to compensate field inhomogeneities induced by differences in magnetic 
susceptibility. Shimming is important at any B0 field, but shim demands are increasing with the 
field strength, because B0 inhomogeneities increase with field and spatially become highly non-
linear. Successful shimming requires an accurate B0 mapping method [4-6,12] and powerful 
higher order shim system [3,13]. Strong second-order shims are typically sufficient to minimize 
macroscopic B0 field distortions in relatively small volumes selected for single voxel MRS. 
Resolved resonances of PCr (3.93 ppm) and Cr (3.91 ppm) in brain spectra of rodents are a 
good marker of successful shimming [7,9,11,14-16]. Efficient higher-order shimming not only 
reduces the spectral linewidth, but also has a substantial effect on correcting the signal 
lineshape, which has a direct effect on metabolite quantification. Optimal shimming is necessary 
but not sufficient requirement for producing high spectral resolution. Hardware instability and 
physiological motion result in frequency and phase fluctuations, which can significantly 
deteriorate the resulting spectral quality if remain uncorrected. Therefore, a single scan 
acquisition mode is preferable, because it allows correcting both frequency and phasing 
fluctuations before FID summation [17-20,37]. In addition, if some FIDs are not correctable, they 
can be easily eliminated from the final summation. If SNR of single scan data is not sufficient to 
perform these corrections, then data acquisition in arrays of small blocks, e.g. 4 or 8 scans per 
block, is recommended, because it allows to correct the frequency drift and fluctuations and to 
remove corrupted FIDs from the final summation. 

Water suppression 
A strong residual water signal adversely affects the spectral baseline, which complicates 
metabolite quantification. The residual water signal can be efficiently removed from spectra 
using HSVD approach [20], however, sidebands of the water signal that overlap with metabolite 
resonances can interfere with metabolite quantification. Therefore, effective water suppression 
is the most reliable solution. The VAPOR method [8,11] has been extensively used due to its 
robustness and decreased sensitivity on B1 adjustment. Fully automatic setting of the VAPOR 
parameters using a local B1 calibration is sufficient for highly efficient water suppression 
[3,10,13,18,21] (Fig. 1). 

Localization performance 
Low sensitivity is a general problem of MRS, therefore, pulse sequences using the full Mz 
magnetization from the voxel, such as PRESS, LASER [22] or SPECIAL [7] are preferable. 
However, signal intensity provided by the localization sequence in not the only important 
parameter for metabolite quantification. The STEAM sequence can provide signal intensity 
proportional for just one half of the available Mz. However, the advantage of STEAM is the 
possibility to use an ultra-short TE [8,11], minimizing the T2 decay and J-evolution, which 
substantially simplifies absolute metabolite quantification [3,9]. In addition, the STEAM 
sequence may be the method of choice in human MRS at ultra-high fields, to overcome 
problems with the chemical shift displacement error, when the available B1

+(max) is not high 
enough [3,8,10]. The PRESS sequence is practically unusable for human applications at ultra 
high fields due to insufficient bandwidths of rephasing RF pulses. This drawback was overcome 
by using pairs of broadband adiabatic RF pulses in the LASER sequence [22], but the penalty 
was increased duration of TE. This problem was partially resolved by a compromise solution in 
semi-LASER [18,23], where one pair of adiabatic RF pulses was eliminated due to slice 
selective excitation. This modification of the LASER sequence allows decreasing the minimum 
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TE. Localization performance of the sequences, i.e. the ability to provide the maximum signal 
from a selected volume of interest (VOI) with the minimum contamination of signals arising from 
outside of VOI, is essential for reliable metabolite quantification. The chemical shift region 0.5 – 
2.0 ppm is the most sensitive spectral region to assess the quality of the localization 
performance (Fig. 1). Desirable localization performance should result in a spectral pattern with 
four broad resonances of fast relaxing macromolecules, which must be discernible in all short 
TE spectra [2,3,7-11,13-15]. Insufficient localization performance results in unwanted spectral 
contamination by signals of subcutaneous lipids. These lipid signals appear in the spectrum 
around 1.5 ppm, typically with the wrong phase. The profile of a single RF pulse is typically not 
good enough for an efficient localization. This limitation in properties of commonly used RF 
pulses can be solved by a “double localization”, e.g. using pairs of RF pulses for each slice 
selection as in LASER [22] or combining the localization sequence, such as STEAM, with the 
outer volume suppression (OVS) [8,10,11]. 

Baseline 
A flat baseline is critical for a reliable quantification of weakly represented metabolites. As 
already was mentioned, baseline distortions are typically caused by bad water suppression and 
by low-quality localization performance, which lead to spectral contamination by unwanted 
signals arising from outside of VOI. Baseline distortions can result from extensive use of first-
order phase correction to compensate an improper timing of the beginning of data acquisition. 
This problem can be easily solved by appropriate timing of the first sampling point of the FID [8]. 

Chemical shift displacement error 
Chemical shift displacement error (CSDE) is a general problem of all MRS techniques based on 
voxel selection using slice selective pulses. CSDE basically means that volumes selected for 
off-resonance signals are spatially displaced from the nominal VOI. This becomes a significant 
problem at high magnetic fields due to increased chemical shift dispersion. Although this 
problem is typically not visible in a spectrum, it may lead to a significant misinterpretation of 
measured data. CSDE is proportional to the ratio of RF pulse bandwidth to the chemical shift 
range of interest expressed in Hz. Therefore, the higher the magnetic field, the broader 
bandwidth of slice selective pulses needed. The B1

+(max) of RF coils used in small animal MRS 
is typically high enough for very short RF pulses to minimize CSDE [11]. As mentioned above, 
limited B1

+(max) and the resulting large CSDE is currently one of the most challenging factors 
for pulse sequence design for human application at ultra-high fields. Due to limitations of 
B1

+(max), the STEAM sequence is preferable to the PRESS sequence for reducing the CSDE. 
When B1

+(max) is not sufficient to decrease CSDE to a reasonable value using amplitude 
modulated RF pulses, then pulse sequences using full passage adiabatic (AFP) pulses, such as 
LASER [22] or semi-LASER [18,23], become the methods of choice. Bandwidths of AFP pulses 
are determined by the frequency sweep widths during the pulse, thus, broadband pulses 
requiring less B1 can be created [22]. However, the penalty for creating broadband AFP pulses 
using low B1 is an increase in their duration, which consequently increases the minimum TE of 
the localization sequence. When multi-channel RF coils are used, the efficiency of RF 
transmission can be improved by B1 shimming, i.e. by optimizing the phase and amplitude of RF 
field transmitted by individual coil elements [24].  

Eddy current correction 
The lineshape of localized short-TE spectra is affected to some degree by residual eddy 
currents despite all efforts for the hardware eddy current compensation. These lineshape 
distortions may cause major problems in accuracy of metabolite quantification. Effects of 
residual eddy currents can be easily removed from metabolite spectra using an unsuppressed 
water signal [8,25]. 

II. Metabolite quantification 
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Fitting methods and the prior knowledge 
Despite increased chemical shift dispersion at ultra-high magnetic fields, spectra of individual 
metabolites are highly overlapped. Therefore, MRS quantification methods require extensive 
prior knowledge for meaningful spectra analysis. Both of the most commonly used fitting 
programs, jMRUI [26,27], working in the time domain, and LCModel [28], working in the 
frequency domain, require metabolite spectra databases which can be experimentally measured 
or simulated based on published information about metabolite chemical shifts and J-couplings 
[29]. If the same type of the prior knowledge is used, both methods should provide very similar 
results. Quantification errors are estimated by Cramér-Rao lower bounds (CRLB). It should be 
emphasized that CRLB are estimated on the basis of assumption that the model (spectral basis 
set) is correct and complete. Obviously, this is not possible and always simplifying assumptions 
must be made. But if a detectable metabolite is missing in the basis set then the quantification 
of other metabolites may be systematically under or overestimated. This is nicely demonstrated 
in the case of ascorbate in analysis of spectra acquired from the developing brains [30]. 
Independent of the type of basis set, measured or simulated, inaccuracies in spectral pattern 
cause a bias and result in underestimated CRLB. In general, differences in estimated metabolite 
concentrations using experimentally measured or simulated basis sets are small, thus a 
simulated basis set can be used in place of a measured one [31]. 

Macromolecule background 
Short TE spectra have a significant signal contribution from fast relaxing macromolecules, which 
are dominantly proteins in healthy brain. These broad signals must be taken into account in 
metabolite quantification. Including the whole macromolecule spectrum in the basis set is a very 
robust approach, and data analyses using this approach provide neurochemically reasonable 
values for weakly represented metabolites, such as GABA [2,3,8,9,14,15]. There are other 
options for accommodating background signals [32,33], but too much flexibility in modeling of 
the macromolecule signal might reduce the robustness of fitting. Macromolecule spectra can be 
experimentally measured using an inversion-recovery experiment [9]. The small residual 
metabolite signals can be suppressed using diffusion-weighted approach [34], or they can be 
eliminated from the spectra by the post-processing [3].  

Referencing 
Neurochemical profiling requires appropriate referencing. The signal of total creatine (tCr) has 
been use widely as an internal reference, but because of differences in tCr content between 
brain regions [13,18], variations in tCr content due to brain development [15,35] and due to 
neurodegenerative processes [21], using tCr as an internal reference is far from being optimal. 
Using unsuppressed water signal as a reference is very useful approximation and works 
extremely well in multiple MRS applications [1-3,9,13-15,21,35-38]. Recently a new referencing 
approach using the Electric REference To access In vivo Concentrations (ERETIC) method was 
described [39]. 

Relaxation 
An ultra-short TE and long TR data acquisition approach substantially minimizes relaxation 
effects and simplifies the “absolute” metabolite quantification. If TE is longer or TR is shorter, 
correction for T2 and T1 relaxation have to be used. In general, each single proton in a molecule 
has its own relaxation properties, which makes assessment of all T1 and T2 values extremely 
difficult from in vivo spectra. But using a number of simplified assumptions assessment of 
metabolite T1 and T2 can be accomplished [40-42]. 

III. Examples of neurochemical profiling 
The primary goal of neurochemical profiling is to extend the range of quantifiable metabolites 
and to improve the reliability, i.e., the precision as well as the accuracy of their quantification. 
Using advances in high-field MR technology and data processing, reliable quantification up to 
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twenty metabolites is feasible in animal and human brains [1-3,7-9,13-15,18,19,21,36-38]. 
Quantification of weakly represented metabolites, such as ascorbate [30,43] and glycine [44,45], 
has been described. Neurochemical profiling was applied in studies of the brain development 
[15,35], in transgenic mouse models [21,38], in animal models of hypoglycemia [46] and deep 
anesthesia [47]. The feasibility of extended neurochemical profiling in human brain and the 
beneficial effect of increased magnetic field was demonstrated in these papers [1-3].  

In conclusion, a reliable quantification of extended range of brain metabolites is feasible using 
MRS methodology. However, the reliability of quantification requires high-quality MR spectra 
and sophisticated processing tools with optimized prior knowledge. 
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