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Cartesian parallel imaging methods such as SENSE [1] or GRAPPA [2] have been highly successful in 
accelerating MRI scans, but they can only be applied when the k-space undersampling is regular, i.e. the PSF of the 
aliased image is a simple comb function. Such regular undersampling leads to well-defined aliasing characteristics 
in the image domain, and the voxels which overlap can be easily determined. However, when data are acquired 
along non-Cartesian trajectories, undersampling leads to aliasing artifacts that appear in all directions (the PSF is 
much more complex), and each voxel in the image domain can potentially alias with all of the other voxels. This is 
due to the changing degree and direction of the acceleration in an undersampled non-Cartesian trajectory. Thus, the 
separation of these pixels using non-Cartesian parallel imaging is considerably more complicated than the Cartesian 
case.   

There are many different methods which have been described to perform non-Cartesian parallel imaging.  
The first method to be introduced was Conjugate Gradient SENSE [3] (CG SENSE).  CG SENSE relies on the fact 
that multi-channel data, combined with information about the coil sensitivities, are redundant, even when the k-
space data themselves are undersampled. The relationship between the image and the acquired non-Cartesian k-
space data can be written as a matrix equation: 
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where m


 is a vector containing the acquired k-space points for each coil, v


 is a vector containing the unknown 
image voxel values, and Ê  represents a combination of coil and gradient encoding. Given that more k-space points 
are acquired (including the sensitivity encoding of the receiver coils) than number of voxels in the image, it is 
possible to reconstruct the missing values in the image matrix v


 using the equation above. However, solving this 

equation directly, i.e. by employing the inverse of the encoding matrix, would require immense amounts memory 
and computation time due to the large sizes of the matrices and vectors involved. However, the equation can also be 
solved using the well-known iterative Conjugate Gradient method. One advantage of this approach is that the 
encoding matrix never has to be written out explicitly; instead, gridding and FTs can be used to solve for the 
unaliased image. The CG SENSE method is important because it allows one to reconstruct images from arbitrary 
undersampled trajectories.  

Another group of methods introduced for non-Cartesian parallel imaging is the family of non-Cartesian 
GRAPPAs.  Standard Cartesian GRAPPA works by using coil sensitivity variations to generate missing spatial 
harmonics in the undersampled k-space data. In order for GRAPPA to be applied and calibrated effectively, the 
sampling in k-space must leave regular patterns of missing datapoints. If this is not the case, a separate GRAPPA 
weight set is required for each missing point in k-space, a time-consuming and computationally intensive 
undertaking. More importantly, these GRAPPA weight sets must be calibrated, a challenging task given that each 
pattern appears exactly once in the dataset, and not multiple times as in standard Cartesian GRAPPA.  However, in 
cases where the non-Cartesian trajectory is highly symmetric, similar patterns do exist, although the patterns are not 
identical. Non-Cartesian GRAPPA takes advantage of these similar patterns to generate weight sets and reconstruct 
the missing k-space points.  These patterns are geometry dependent and cannot be generalized, and different non-
Cartesian GRAPPA methods have been proposed for the radial [4], spiral [5,6], zig-zag [7], and variable density [8] 
trajectories. 

As an example, in radial GRAPPA, segments in the read and projection direction are defined.  It is assumed 
that the geometry within a single segment is Cartesian, and the GRAPPA weight set for this segment is determined 
using a fully-sampled dataset and applied to the undersampled data.  Unfortunately, the reconstruction segment size 
is difficult to choose such that the reconstructions are accurate; if the segment is too small, the GRAPPA weights 
cannot be properly determined because there are not enough repetitions of the kernel throughout the segment.  
However, if the segment is large, the assumption that the data are Cartesian breaks down, and the weights do not 
reflect the actual radial geometry.  Thus, standard radial GRAPPA cannot be used for accurate reconstructions, 
especially when working with high acceleration factors.   

Another option is to use through-time information to supplement the through k-space calibration.  This 
method, known as hybrid through-time/through-k-space non-Cartesian GRAPPA [9], has been demonstrated to yield 
high acceleration factors because the both geometry of the non-Cartesian k-space and the large number of kernel 
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occurrences for the calibration are respected.  This method can be used with any non-Cartesian trajectory as it does 
not make assumptions about the geometry of the trajectory.  However, this method requires a large number of 
calibration frames (25-80) as opposed to the standard non-Cartesian GRAPPA, which at most requires a single fully-
sampled calibration dataset. 

Another method for reconstructing undersampled datasets with non-Cartesian trajectories is PARS [10, 11]. 
Unlike CG SENSE, PARS is a direct method which reconstructs missing points in k-space, although coil maps are 
employed in both methods. Instead of generating the missing non-Cartesian points, as in the non-Cartesian 
GRAPPA methods, PARS directly reconstructs the Cartesian k-space points. In order to accomplish this, source 
points are chosen from the non-Cartesian data that falls within a specified radius kr, the so-called local 
neighborhood, of the ''missing'' Cartesian point. These source points are combined using weight sets determined 
from the coil map to reconstruct the Cartesian points.  
 It is important to note that this list of non-Cartesian parallel imaging methods does not include all of the 
methods that have been proposed for the reconstruction of undersampled non-Cartesian data.  The lack of standard 
non-Cartesian parallel imaging on most MRI scanners reveals the need for more robust and user-friendly 
implementations of these techniques (or a new method altogether).  Thus, despite the variety of non-Cartesian 
parallel imaging methods which exist, new ideas which can make these techniques applicable in a clinical setting are 
still being sought. 
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