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Introduction 
Advanced MR imaging offer insights related to biophysical, physiologic, and metabolic status of tissue, 
that compliments the exquisite anatomical detail of routine MRI.  Harnessing these features for prediction 
of treatment response of individual brain tumor patients has compelling potential to improve their clinical 
management.  Based on tumor biology and mechanism of therapeutic action, response biomarkers 
sensitive to tissue perfusion and BBB integrity are rational choices to assess chemo-agent access, tissue 
viability and therapeutic effect of conventional and vascular-active agents.  Given that water mobility is 
affected by density of cellular constituents that impede water mobility, alteration of cellular properties 
secondary to cytotoxic treatment has also prompted interest in diffusion MRI as a therapy response 
biomarker.  Proton MRS has demonstrated potential identify tumor beyond margins defined on 
conventional imaging thereby guide biopsy toward greater yield as well as aid therapy planning.  Whether 
used individually or in combination, advanced imaging indices can reveal a more complete description of 
the tumor prior to treatment, during treatment for mid-course response assessment, as well as for post-
therapy management.  This lecture will summarize biophysical principles and role of MR biomarkers in 
brain tumor management. 
 
MRS 
Proton MRS is particularly valuable in application prior to, and well after therapeutic intervention [1, 2].  
Elevated choline and lactate/lipid signal in untreated brain tumor can aid tumor grading, can direct the 
surgeon toward highest grade tumor for biopsy/resection and is being used for margin definition in 
radiotherapy treatment planning [3, 4].  MRS is also recognized to be beneficial for long-term treatment 
follow up since newly enhancing lesions long after radiotherapy presents a significant clinical dilemma 
between diagnoses of recurrent tumor versus radiation-induced necrosis.  Proton MRSI studies have 
demonstrated elevated Cho/NAA and Cho/Cr in recurrent tumor relative to radiation injury, thereby 
offering MRS as a non invasive alternative biopsy, although situations of mixed tumor and necrosis are 
still problematic [5-7].      
 
Perfusion / Permeability 
Brain tumor blood volume, flow, and vascular permeability can be assessed using heavily T1-weighted 
(dynamic contrast-enhanced, DCE) or T2*-weighted (dynamic susceptibility contrast, DSC) sequences to 
document agent distribution kinetics.  One of several well-established mathematical models is then 
applied to derive maps that infer relevant physiologic properties such as vessel permeability-surface area 
product, and blood volume.  Use of perfusion-sensitive approaches in brain tumor management is 
motivated by the linkage between tumor vascularity and tumor grade, access of systemic chemotherapy 
agents to the tumor, as well as monitoring impact of antiagiogentic and vascular disruptive agents [8].  In 
terms of treatment response assessment, the majority studies of humans have employed DSC due to its 
relative technical ease.  Pretreatment perfusion MRI has been shown to be predictive of treatment 
response and overall survival in both low-grade [9] and high-grade glioma [10] where increased CBV/CBF 
features are associated with patients having poor outcome.  These observations are consistent with a 
correlation between tumor grade and increased perfusion and/or vascular permeability [11].  
Perfusion/permeability changes during conventional and antiangiogenic treatment of patients were also 
informative of response [8, 10, 12].  DSC perfusion also aids distinction between recurrent glioma and 
radiation necrosis [7, 13-15]. 
 
Diffusion  
Preclinical studies have demonstrated a consistent pattern of increased diffusion following effective 
treatment where increased water mobility is attributable to therapy-induced necrosis.  In translation to 
human brain tumor patients, an increase in ADC is generally associated with a positive response 
although studies are few and ADC change patterns are more variable and clearly affected by tumor 
heterogeneity [16-18].  A potentially remedy to heterogeneity is to analyze ADC changes on voxel-by-
voxel basis using co-registered pre- and post-Tx ADC maps.  By this voxel-based analysis it has been 
shown that tumors exhibiting ADC change at 3 weeks into treatment were predictive of delayed 
radiographic response, disease time to progression and overall survival in patients with malignant glioma 
[14, 19]. 
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