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Diffusion refers to the random thermally-driven random-walk motion of molecules (in this case 

water). Over a timescale of ~50ms, water molecules in living tissue will typically travel distances 

of ~1-10µm, which is comparable to the scale of cellular structures. The distances travelled by 

diffusing water molecules are strongly influenced by their local environment, in particular by 

obstacles such as cell membranes. Diffusion can therefore be used to probe tissue microstructure 

on a scale comparable with cellular structures. This is of particular interest for brain white 

matter, which consists primarily of densely packed neuronal axons. In this environment, the 

strongly oriented arrangements of membranes and myelin sheaths causes water molecules to 

diffuse preferentially along the orientation of the fibres, rather than across them (see [1] for a 

review). This orientational bias in the diffusion of water molecules can be used to infer the 

orientation of white matter fibres locally. These orientations can then in turn be used to delineate 

white matter tracts in the brain by following the estimated white matter orientation from a given 

seed point using so-called fibre-tracking or tractography methods (see review in [2]). Diffusion 

imaging therefore provides a means to study brain white matter and its connectivity, and is 

unique in allowing such investigations to be carried out non-invasively in-vivo. 

TOPICS COVERED: 

• Diffusion-weighted MRI 

MRI can be made sensitive to the microscopic displacements of water molecules using 

suitably arranged diffusion-weighting (DW) gradient pulses, the simplest of which consists of 

a pair of gradient pulses of opposite polarity. The first gradient pulse imparts a position-

dependent phase shift to the spins; these are then left to diffuse for a fixed diffusion time; the 

second gradient pulse imparts the opposite phase shift to the spins. Spins that have moved 

between the two gradient pulses will have a net residual phase shift. Over the scale of an 

imaging voxel, these phase shifts will be randomly distributed, leading to signal loss [3].  

• The apparent diffusion coefficient (ADC) 

The simplest model of diffusion is the Einstein equation: <x
2
> = 6Dτ. However, the Einstein 

equation is only strictly valid for free, isotropic diffusion. In tissue, barriers to diffusion make 

the measured diffusion coefficient dependent on the diffusion time τ. For this reason, the term 

apparent diffusion coefficient (ADC) is used.  

• The diffusion tensor model 

The diffusion tensor model [4] was proposed to model the anisotropic (direction-dependent) 

diffusion of water in white matter. This model assumes that the probability density function 

(PDF) of spin displacements is a 3-dimensional Gaussian distribution, characterised by a 3×3 

symmetric tensor, and often represented as an ellipsoid (see figure 1). In coherently oriented 

white matter, the fibre orientation will coincide with the major axis of this diffusion ellipsoid 

(the major eigenvector of the diffusion tensor). 
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• Diffusion anisotropy 

Anisotropy refers to the deviation of the diffusion tensor from the isotropic spherical case. 

Several indices have been proposed to quantify anisotropy, of which the most common is 

fractional anisotropy (FA) [5]. White matter typically has high anisotropy due to the high 

degree of structural coherence associated with the regular arrangement of axonal fibres. On 

the other hand, grey matter has low anisotropy due to the ‘random’ arrangement of its 

microstructure on the voxel scale. Anisotropy has been shown to be affected by factors such 

as demyelination and axonal membrane degradation [1], and is for this reason often 

interpreted as a marker of white matter ‘integrity’. However, tensor-based measures of 

anisotropy are also extremely sensitive to a number of other factors that make robust 

interpretation of anisotropy observations difficult. 

• Tractography / fibre-tracking 

Tractography algorithms attempt to delineate the path of white matter pathways based on 

voxel-wise estimates of fibre orientations. Starting from a user-specified ‘seed point’, these 

typically work by stepping along the estimated direction of the white matter fibres by a small 

fixed distance until some termination criterion is reached (e.g. low anisotropy). Tractography 

can hence be used to study the large-scale connectivity of the brain.  

• The crossing fibre problem 

The diffusion tensor model implicitly assumes each voxel contains a single coherent bundle 

of fibres. It is now becoming clear that this assumption is frequently violated (crossing fibres 

can be detected in up to 90% of white matter [6]). In such voxels, the estimated diffusion 

tensor will be ‘averaged’ over the different fibre populations, leading to a reduction in 

anisotropy and a bias in the estimated fibre orientations (which no longer correspond to any 

of the fibre orientations present) [7]. The effect on tractography is profound, since an 

incorrect orientation estimate at any one point along a track may cause the algorithm to 

deviate into an adjacent pathway and establish connections to completely unrelated regions of 

the brain.  

• Higher order models 

A number of approaches have been proposed to estimate fibre orientations in crossing fibre 

voxels [e.g. 8-14], and to perform tractography in a much more robust way based on the fibre 

orientations provided by them [e.g. 15-19]. Yet other higher-order models have been 

proposed to extract microstructural information, such as axonal radii [e.g. 20,21] or the 

presence of non-Gaussian diffusion [e.g. 22]. While these models typically require longer 

acquisition times (i.e. more DW directions and/or more b-values), they can potentially 

provide much more specific and robust information than the diffusion tensor model alone. 
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