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Atherosclerosis and Vessel wall Imaging 
Despite improvements in prevention, diagnosis, and treatment, cardiovascular disease remains the leading 
cause of morbidity and mortality in the Western world [1–4]. Atherosclerosis is a systemic and progressive 
disease of the vessel wall and the most frequent cause of coronary artery disease (CAD). Atherosclerosis alone 
is rarely fatal; however, sudden luminal thrombosis, superimposed on a ruptured or eroded atherosclerotic 
plaque, causes life-threatening clinical events such as acute coronary syndromes and stroke [5–7]. Plaques 
assumed to result in luminal thrombosis are referred to as vulnerable plaques. These plaques are usually 
relatively large and associated with positive remodeling of the vessel wall and tend to preserve a normal vessel 
lumen [8]. Today’s clinical assessment of CAD is based on the severity of luminal narrowing, flow restriction, 
or functional indices of cardiac ischemia. Therefore, unlike the detection of plaque underlying stable angina, 
which is associated with a significant lumen narrowing, a priori detection of vulnerable plaques remains 
challenging [8,9]. Noninvasive techniques for imaging atherothrombosis currently include cardiovascular 
magnetic resonance (CMR), multidetector CT, and ultrasound. Among these modalities, CMR has emerged as 
the most comprehensive noninvasive in vivo imaging modality, offering several different methods to assess and 
characterize atherosclerotic plaque burden. These methods, which include non-contrast and contrast-
enhanced vessel wall imaging, have shown great promise to assess morphological characteristics of vulnerable 
plaques, such as inflammatory activity, neovasculature, and positive vessel wall remodeling. Furthermore, the 
advent of molecular contrast agents has allowed interrogating biological processes at a molecular and cellular 
level and experiments in large animal models have shown potential for clinical translation. With further 
development, CMR imaging of the carotid, aortic, and coronary walls may prove to be clinically beneficial in 
identifying subclinical disease and unstable lesions. 

MRI Coronary Angiography 
In the early 1990s, Edelman et al. [10] were among the first to demonstrate the feasibility of magnetic 
resonance angiography (MRA) to visualize the proximal coronary arteries in healthy volunteers. Coronary 
MRA examinations are typically performed without intravenously administered contrast agents. The contrast 
between the coronary arteries and surrounding tissues such as epicardial fat and myocardium is typically 
augmented using fat-saturation prepulses [10], magnetization transfer contrast prepulses [11], or T2 
preparatory pulses [12,13]. The latter take advantage of the natural T2 differences between the blood and the 
surrounding myocardium. In bright blood coronary MRA the coronary lumen appears bright, whereas the 
surrounding myocardium has reduced signal intensity. Recent technical developments include the use of 1) 
steady-state with free-precession to obtain high signal intensity from the coronary arteries and very high 
contrast between the ventricular blood pool and the myocardium [14,15]; 2) whole-heart coronary MRA [16] 
to simplify data acquisition and to shorten examination duration [17]; 3) parallel imaging to reduce scanning 
time [18]; 4) blood pool, contrast agents [19] to enhance contrast between the coronary artery lumen and 
myocardium; 5) high field [20,21] coronary MRA to benefit from the improved signal to noise at higher field 
strength and 6) novel motion compensation techniques [22-25] to make coronary MRA more reliable and less 
user dependent. 

In the past decade, MRA has emerged as a noninvasive tool for the diagnosis of CAD and was intensively 
investigated at research-oriented centers. Recently published single-center trials demonstrated a sensitivity of 
80% to 90% and a specificity of greater than 90% for the identification of coronary stenosis in the proximal to 
mid native vessel segments [26–28]. Although the utility of coronary MRA has not been established in general 
practice, coronary MRA seems to be particularly helpful for the exclusion of left-main or multivessel disease 
[29]. 
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