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Introduction  

The desire to achieve high spatial and/or temporal resolution in MRI coupled with limited scan 

time has led to the necessity to reconstruct images from incomplete datasets. Mathematically 

this amounts to solving an underdetermined system of equations, that is, the number of 

unknowns (image pixel values) is larger than the number of equations (acquired 

measurements).  Underdetermined systems of equations generally have an infinite number of 

possible solutions. A standard approach to isolate a single feasible solution is to incorporate 

additional prior information about the problem in order to regularize reconstruction and to 

account for unsampled data points.  A number of methods to accelerate MR imaging have been 

proposed, including parallel imaging [1-3], UNFOLD [4], k-t BLAST/SENSE [5], and, more 

recently, compressed sensing [6-8] and HYPR [9, 10].  We will discuss several different ways to 

regularize image reconstruction from incomplete data, using both theoretical assumptions and 

image-specific constraints. 

Regularized Image Reconstruction 

Mathematical concept of a norm is one of the key elements in reconstruction algorithms, 

especially, the    norm defined by 

‖ ‖  (∑|  |
 )   . 

Of particular interest in image reconstructions are    ,   , and    norms (although the last one 

technically is not a norm as it does not satisfy all the necessary axioms). 

MRI signal equation can be represented in the following form: 

    ,                                                                  (1) 

where   is the encoding matrix containing Fourier encoding terms and, generally, coil sensitivity 

values,   is the image vector, and   is the vector of measured data from all coil receivers. When 

the number of elements in f, that is, the number of image pixels, is greater than the number of 

rows in E, that is, the number of acquired data points, the linear system in Eq. (1) becomes 

underdetermined and has an infinite number of possible solutions. The simplest way to isolate a 

single solution is to minimize    norm of the residue, that is, to solve the following problem: 

         ‖    ‖ 
   

If E incorporates coil sensitivity values, then such minimization corresponds to the simplest 

formulation of parallel imaging (SENSE) approach [1].  However, decreased acquisition time 

and noise amplification (g-factor) lead to increased noise level in the reconstructed imaging.  
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Tikhonov Regularization. One of the ways to solve this problem is to apply Tikhonov 

regularization [11,12] or the regularization by    norm: 

         (‖    ‖ 
   ‖ ‖ 

 )  

where λ is the regularizing parameter that provides a balance between the level of the noise in 

the reconstructed image and the level of residual artifacts.  

Compressed Sensing.  Recently, a novel mathematical theory has been developed [6] that 

states that sparse images (i.e., images with a relatively small number of pixels containing 

relevant information) can be accurately reconstructed from undersampled datasets, provided 

the encoding matrix   satisfies certain conditions. Ideally, the sparsity of an image is measured 

by its    norm that counts the number of non-zero pixels.  Therefore, if we know in advance that 

the underlying image is expected to be sparse (as is the case, for example, in MR angiography), 

then the image may be obtained as 

         (‖    ‖ 
   ‖ ‖ )  

The problem with this formulation is that while it allows for an accurate reconstruction of sparse 

images, the minimization possesses combinatorial complexity, so its practical implementation is 

infeasible.  However, the compressed sensing theory proves that, under certain conditions, the 

solution of    minimization problem is equivalent to the solution of    minimization problem, i.e. 

we can solve the following problem: 

         (‖    ‖ 
   ‖ ‖ )  

There are a number of computationally efficient ways to implement    minimization in practice, 

which made compressed sensing ideas attractive to accelerated MR imaging [7, 8]. 

In compressed sensing, admissible acceleration factors are analytically related to the sparsity 

level of the underlying signal. Higher level of undersampling leads to artifacts in the 

reconstructed images. This often poses a problem in rapid imaging, since even intrinsically 

sparse angiographic images may not possess the level of sparsity necessary to support the high 

acceleration factors desirable in some applications. However, image sparsity can be enhanced 

either by an application of a sparsifying transform such as an image gradient or a wavelet 

transform, or by subtracting a prior image estimate [13], or by both.  Moreover, several 

regularizing terms may be used to provide a better reconstruction. Therefore, in its most general 

formulation compressed sensing solves the following minimization problem: 

         (‖    ‖ 
  ∑  ‖  (      )‖

 
)   

Here,    are sparsifying transforms and       are corresponding prior image estimates that may 

be obtained in a number of ways, for example, from a prior scan, or from more densely sampled 

low frequencies, or from temporally averaging a time series.  
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Images in Fig. 1 compare the effects of different ways to regularize reconstruction and provide 

an illustration to the fact that    norm is optimal from the point of view of noise properties but 

does not eliminate residual artifacts;    norm helps restore image sharpness but is not noise 

optimal; while    norm of the image gradient provides a tradeoff between these two cases. 

 We will discuss both theoretical requirements of compressed sensing and some aspects of its 

practical implementation. 

HYPR   

The HighlY constract backPRojection (HYPR) method belongs to another family of constrained 

reconstruction algorithms, which use a multiplicative constraint by a prior image. HYPR 

reconstruction is usually applied to serial imaging, such as time-resolved imaging or diffusion 

tensor imaging. A HYPR image is obtained as  

      

where   is the prior image estimate and   is a weighting image. The prior image estimate,  , 

also called the composite image, is usually obtained from averaging all or a subset of the data 

collected during the exam. The quality of the composite image largely determines spatial 

resolution and SNR of the individual HYPR frames. The main distinction between different 

algorithms in the HYPR family lies in the way the weighting images are formed. The original 

HYPR algorithm [9] and its modification [14] use unfiltered backprojection, and therefore are 

tailored specifically to radial acquisition. The subsequently developed HYPR LR algorithm [10] 

relies on k-space filtering to form the weighting images and can be applicable to any sampling 

trajectory. Another advantage of HYPR LR is that it reduces signal cross-talk between spatially 

adjacent objects with different time courses, such as, for example, an artery and a vein. This 

Figure 1.  Reconstruction of an image from a radially undersampled dataset 

(acceleration factor 4) using    regularization (left),    regularization of the 

image itself (center), and    regularization of the image gradient (right).  
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property allows for the use of composite images collected over a longer period of time and, thus, 

having higher SNR, which is then transferred to individual HYPR frames. Another possibility is 

to acquire a composite image in a separate scan, as was done in the HYPR Flow technique 

[15]. Images in Fig. 2 illustrate contrast arrival in an AVM patient using the HYPR Flow 

technique. 

Both HYPR and HYPR LR algorithms are approximate image reconstruction techniques. We will 

discuss the dependence of the reconstruction error and performance of the algorithms on image 

sparsity and spatio-temporal correlation of the images in the series. We will also discuss several 

iterative HYPR techniques [16-18] that were developed with the aim of improving the accuracy 

of the reconstruction. 
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