

BJC HealthCare"

Mallinckrodt Institute of Radiology

Common Neonatal Lesions

Terrie Inder St Louis Children's Hospital Washington University

Neuro MRI Course May 11th 2011

Introduction

- Common Lesions in the Term Infant
 - What is currently done in clinical practice
 - Significance of Cerebral Lesions
- Common Lesions in the Preterm Infant
 - Prognostic Significance of the lesions

The most important ingredient..

- Good communication between the clinical and radiological team
 - The clinical details of the infant and likely diagnoses what the question is for the imaging? (clinician)
 - What to order? (radiology)
 - What is present in the images (radiology)
 - Prognosis and follow up (clinician)

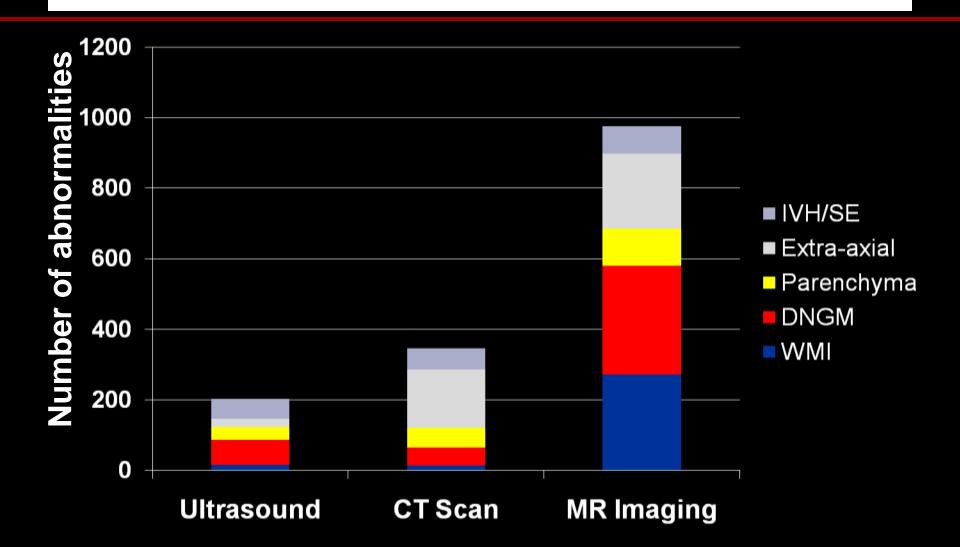
This can be met with regular co-review of the images (daily, weekly meeting) and also quarterly- annual review of the numbers of infants imaged, diagnoses, schema for imaging etc

The term infant

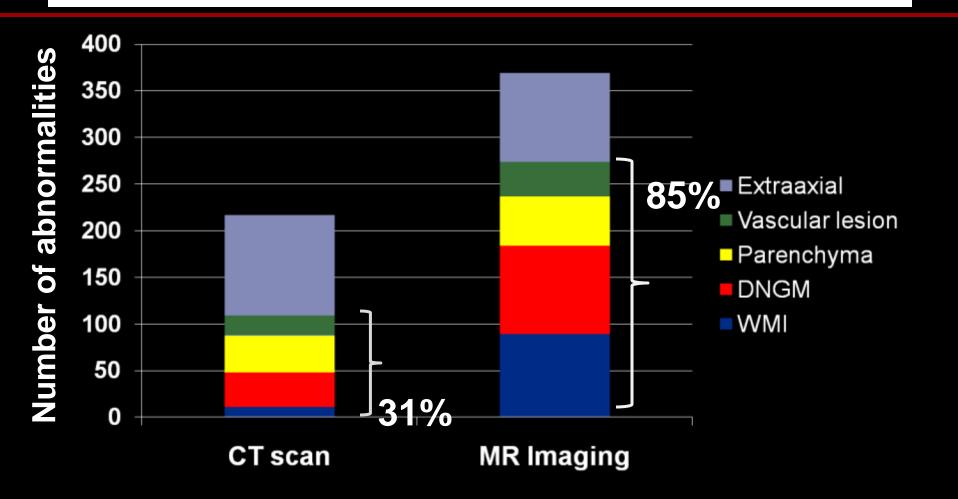
What imaging is done in term infants?

- 88,527 infants screened from 70 Centers
 - All Centers had access to MR Imaging
- 1,743 (2%) met criteria for encephalopathy
 - 34 (2%) infants had evidence of cerebral dysgenesis on neuroimaging and excluded
- 1,421 (82%) underwent some form of neuroimaging evaluation
 - Of the 322 (18%) of infants that did not have any neuroimaging there were 62 deaths (30 on day 1 and 61 by day 7)
 - 15% living term NE infants NO neuroimaging

		Ultrasound	CT Scan	MRI
Number of exams		729 (51%) 42% total	477 (34%) 28% total	1074 (75%) 63% total
Mean (SD) age (days) at first exam		3.1 (4.4)	3.2 (3.5)	7.3 (8.7)
Abnormal				
Hemorrhage	IVH/SE			
	Extra-axial			
	Parenchymal			
DNGM				
roc. Intl. Soc. Mag. Reson. Med. 19 (2	011)			


		Ultrasound	CT Scan	MRI
Number of exams		729 (51%)	477 (34%)	1074 (75%)
Mean (SD) age at first exam		3.1 (4.4)	3.2 (3.5)	7.3 (8.7)
Abnormal		232 (32%)	271 (57%)	717 (67%)
Hemorrhage	IVH/SE			
	Extra-axial			
	Parenchymal			
DNGM				
WM Injury roc. Intl. Soc. Mag. Reson. Med. 19 (2	011)			

		Ultrasound	CT Scan	MRI
Number of exams		729 (51%)	477 (34%)	1074 (75%)
Mean (SD) age at first exam		3.1 (4.4)	3.2 (3.5)	7.3 (8.7)
Abnormal		232 (32%)	271 (57%)	717 (67%)
Hemorrhage	IVH/SE	56 (8%)	59 (12%)	79 (7%)
	Extra-axial	24 (3%)	165 (35%)	212 (20%)
	Parenchymal	37 (5%)	57 (12%)	105 (10%)
DNGM				
WM Injury roc. Intl. Soc. Mag. Reson. Med. 19 (2	2011)			


		Ultrasound	CT Scan	MRI
Number of exams		729 (51%)	477 (34%)	1074 (75%)
Mean (SD) age at first exam		3.1 (4.4)	3.2 (3.5)	7.3 (8.7)
Abnormal		232 (32%)	271 (57%)	717 (67%)
Hemorrhage	IVH/SE	56 (8%)	59 (12%)	79 (7%)
	Extra-axial	24 (3%)	165 (35%)	212 (20%)
	Parenchymal	37 (5%)	57 (12%)	105 (10%)
DNGM		70 (10%)	50 (10%)	309 (29%)
WM Injury roc. Intl. Soc. Mag. Reson. Med. 19 (2	2011)			

		Ultrasound	CT Scan	MRI
Number of exams		729 (51%)	477 (34%)	1074 (75%)
Mean (SD) age at first exam		3.1 (4.4)	3.2 (3.5)	7.3 (8.7)
Abnormal		232 (32%)	271 (57%)	717 (67%)
Hemorrhage	IVH/SE	56 (8%)	59 (12%)	79 (7%)
	Extra-axial	24 (3%)	165 (35%)	212 (20%)
	Parenchymal	37 (5%)	57 (12%)	105 (10%)
DNGM		70 (10%)	50 (10%)	309 (29%)
WM Injury roc. Intl. Soc. Mag. Reson. Med. 19 (2	2011)	16 (2%)	15 (3%)	271 (25%)

Abnormalities on Imaging

317 (20%) infants-both CT and MRI

Higher detection on MRI: WM Injury 10X, DNGM 3X, Vascular lesions 2X

Conclusions

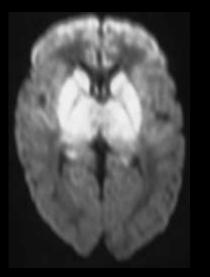
- There is a wide variation in the use of neuroimaging in NE in term infants
- CUS and CT similar rates of significant neuropathology
- MR imaging more often revealed vascular lesions, white matter and deep nuclear gray matter injury of prognostic significance (*Chau et al Pediatrics 2009;123:319-326*)

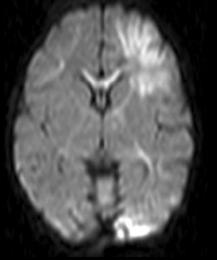
Conclusions – Avoid CT

- Radiation from CT scans done in 2007 will cause 29,000 cancers and kill nearly 15,000 Americans.(Reuters February 2010)
- Radiation Risks from CT in Children: A Public Health Issue (National Cancer Institute – NIH December 2008)
- Major national and international organizations agree no amount of radiation should be considered absolutely safe.
- The benefits of CT examinations should always outweigh the risks for an individual child; unnecessary exposure is associated with unnecessary risk.
 - http://www.cancer.gov/cancertopics/causes/radiation-risks-pediatric-CT

Why image in the Term Encephalopathic Infant?

Confirm the diagnosis

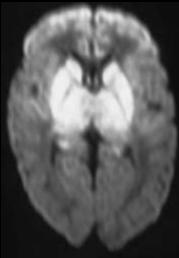

 Define the nature and the extent of injury – prognosis and early intervention services


Patterns of cerebral injury

Shalak L, Perlman JM. Early Hum Dev. 2004 Nov;80(2):125-41.

Intrapartum Hypoxic-Ischemic Brain Injury

Acute Injury Sentinel Event Cord pH < 7.00 Resuscitation Low Apgar scores Encephalopathy Renal dysfunction Neuroimaging +

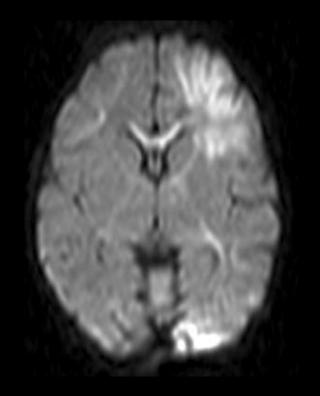


Subacute Injury Normal Labor Cord pH > 7.00 Minimal resuscitation Good Apgar scores Encephalopathy Neuroimaging +

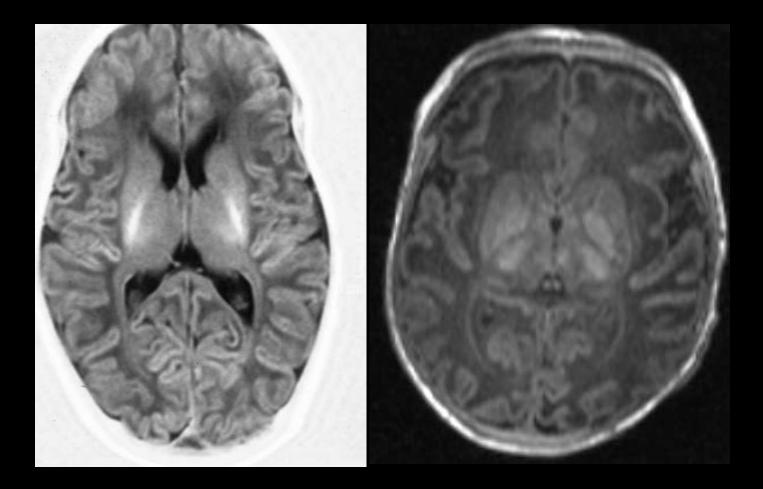
Clinico-pathological correlate

Isolated basal ganglia injury

Neonatal period – hypotonia


Later – High risk for adverse outcome spastic quadriparesis, movement disorders (may have spared intellect and language)

Clinico-pathological correlate


Selective cortical neuronal injury - parasagittal

Neonatal period – proximal axial weakness

Later – Lower risk for adverse outcome - Specific intellectual impairments including memory, visuospatial & language

Posterior Limb of the Internal Capsule

Abnormal PLIC in relation to outcome Rutherford et al; *Pediatrics 1998*

PLIC		Outcome Normal
Normal	0	28
Abnormal	41	4*

* these infants had extensive white matter damage; sensitivity 0.90; specificity 1; PPV 1; NPV 0.87

Evolution of Neuroimaging

16 hours

Imaging evolved Lactate increase Extension of DNGM

4 days

8 days

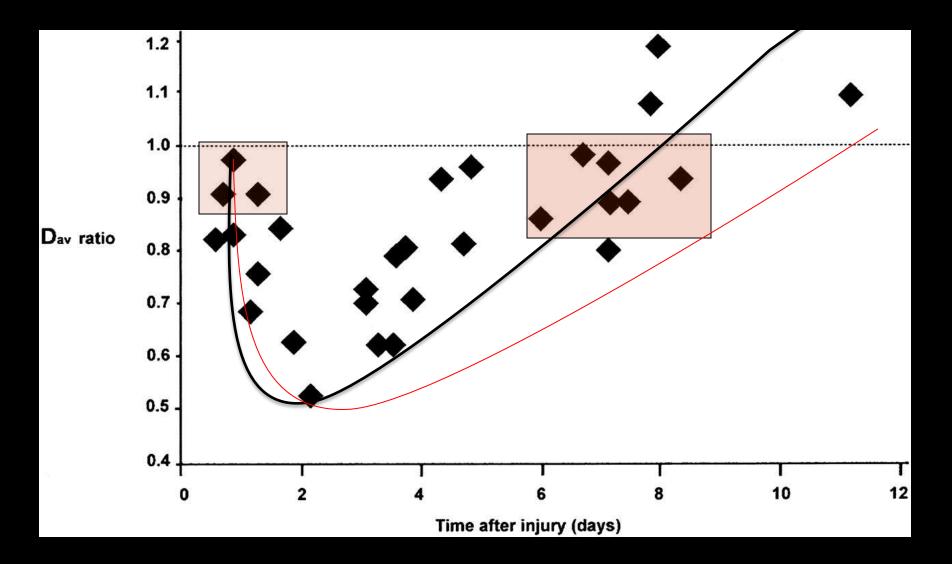
Barkovich AJ et al AJNR 2006:27:533-47

Impact of Hypothermia

Reduction in cerebral lesions on MRI with therapeutic hypothermia (TOBY trial)

Lesion site	Adjusted odds ratio (95% confidence intervals)
Basal ganglia and thalami	0.36 (0.15-0.84) P=0.02
Posterior limb of internal capsule	0.38 (0.17-0.85) P=0.02
White matter	0.30 (0.12-0.77) P=0.01
Cortex	0.62 (0.27-1.41) P=0.25

Accuracy of prediction of outcome by MRI following therapeutic hypothermia


Major MRI abnormalities	Cooled (95% Confidence intervals)	Non cooled(95% Confidence intervals)
Sensitivity	0.88 (0.79-0.97)	0.94(0.88-1.0)
Specificity	0.82(0.72-0.92)	0.68(0.56-0.80)
Positive predictive value	0.76(0.65-0.87)	0.74(0.63-0.85)
Negative predictive value	0.91(0.83-0.99)	0.92(0.85-0.99)

Impact of hypothermia

Eighteen infants fullfilled the injury criteria MRI.

Dav values were decreased in injured infants two days after injury with a maximum decrease of 50 % than reference values.

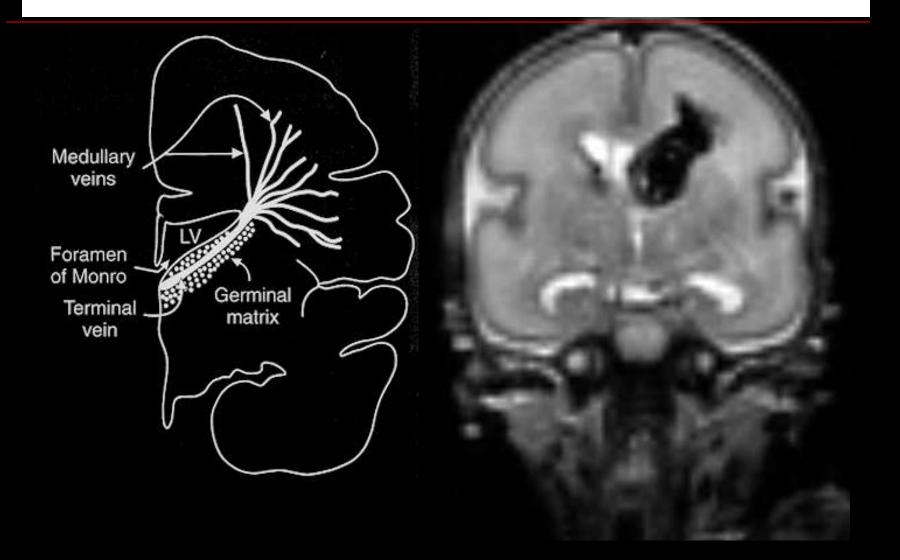
The return to reference value (pseudonormalization) was observed to occur after the tenth day.

McKinstry RC et al. Neurology. 2002 59:824-33.

Premature Infant

BRAIN INJURY

BRAIN DEVELOPMENT

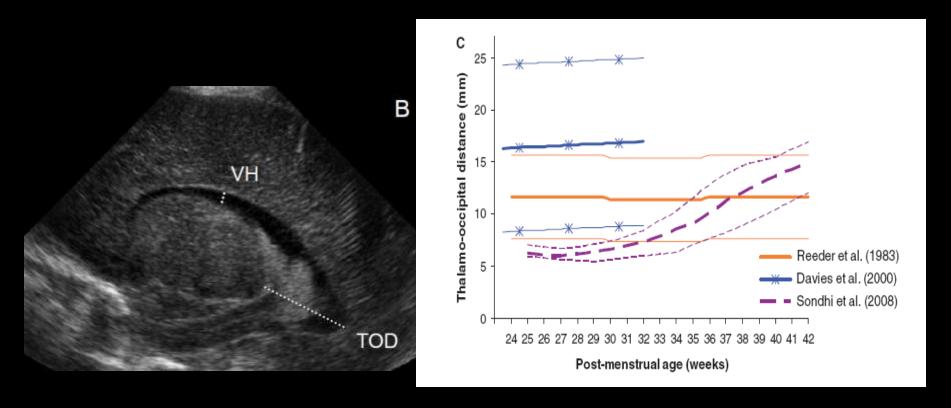

Intraventricular Hemorrhage (IVH)

Intraventricular Hemorrhage

- Includes subependymal hemorrhage (SEH), intraventricular hemorrhage (IVH) and intraparenchymal hemorrhage (IPH)
- Classification:
 - I SEH
 - II IVH smaller/without ventriculomegaly
 - III IVH larger/with ventriculomegaly
 - IV Intraparenchymal Hemorrhage

Grade IV Intraventricular Hemorrhage

Neuro-imaging and IVH

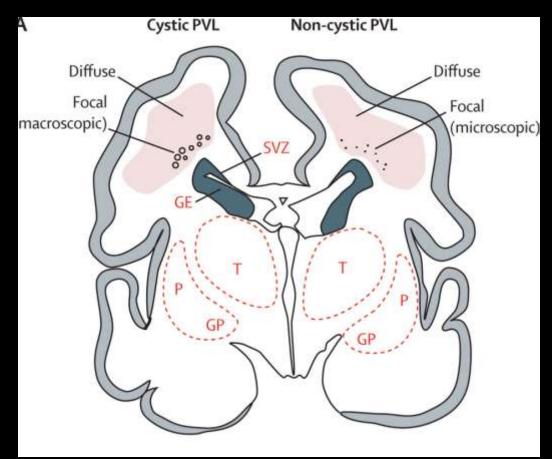

- Cranial ultrasound has good sensitivity for hemorrhage
- CUS from 326 infants had good agreement for grade III or IV IVH (>90%) but poor-to-fair for grade I/II IVH (48%-68%)
 - Hintz et al J Peds 2007;150:592-6
- Improved prognosis with more frequent ultrasound scans
 - DeVries LS et al. J Peds 2004;144:815-20

PHVD

- Accounts suggest that increase in adverse outcome from 55% to 78% in Grade 3, 63% to 92% in Grade 4 when VP shunt required
- CP Rates 7.4% (Grade 3), 48% (Grade 4)
- Early intervention (exceeding 97th) may improve outcome
 - Brouwer et al J Pediatr 2008;152:648-54)

Ultrasound measures

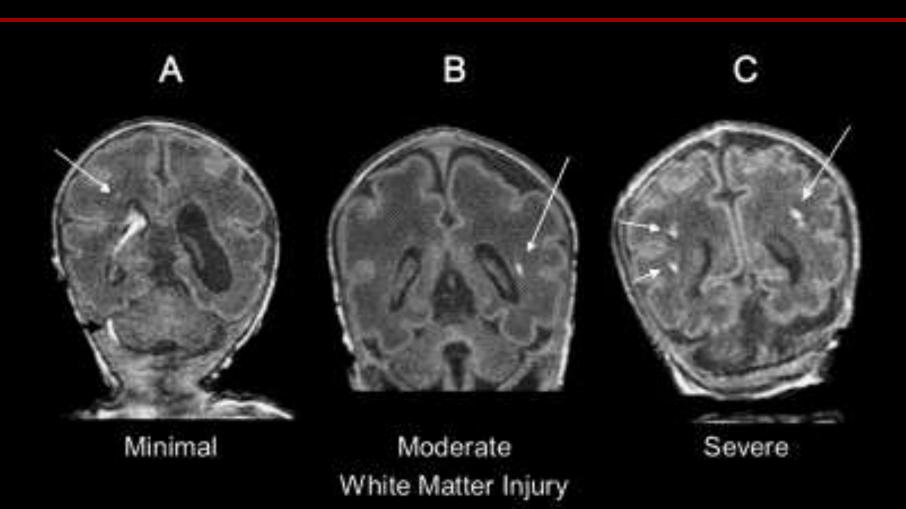
Brouwer et al Acta Pediatrica 2010 (in press)



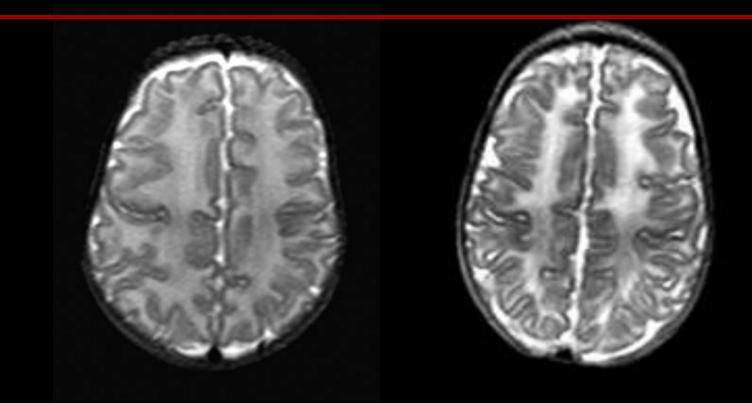
Cerebellar Hemorrhage

- Low detection on cranial ultrasound
- Estimated 20% of VLBW infants
- Major overlap mechanistically with IVH
- Current St Louis study 23% infants <30 weeks gestation with only 3/25 detected on CUS
- Outcome
 - 40% cognitive, motor and social-communication disorders
 - Limperopoulos Pediatrics 2007;120:584-93

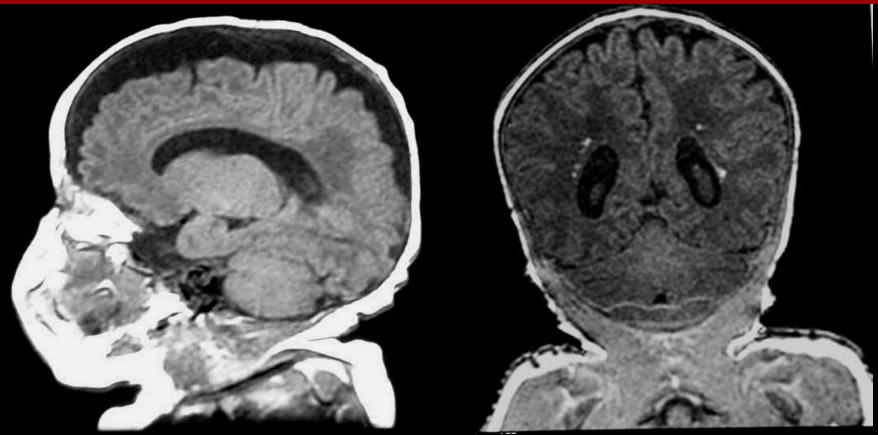
Periventricular Leukomalacia (PVL)


White matter Abnormalities

- Terminology
 - White matter cysts
 - White matter
 punctate lesions
 - Loss of white matter volume
 - Diffuse high signal changes throughout white matter


Volpe JJ Lancet Neurology 2009;8:110-24

White matter abnormalities


Miller SP et al J Pediatrics 2005;147:467-74

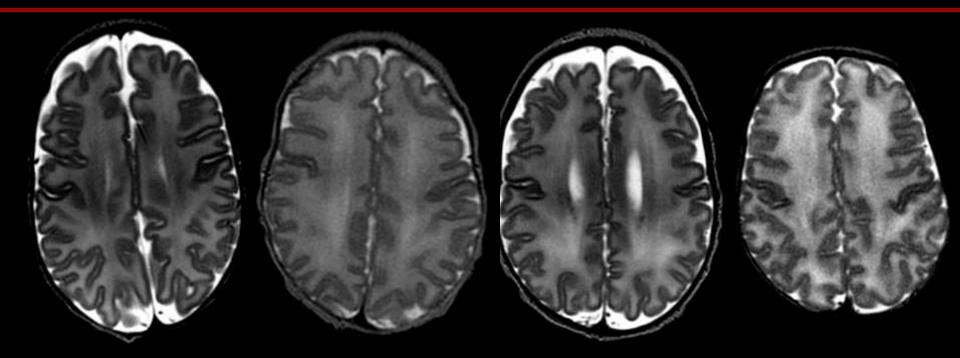
Diffuse Excessive High Signal Intensity (DEHSI)

Reported in upto 75% preterm at term *Malalouf et al Pediatrics 2001;107:719-27*

White matter abnormalities

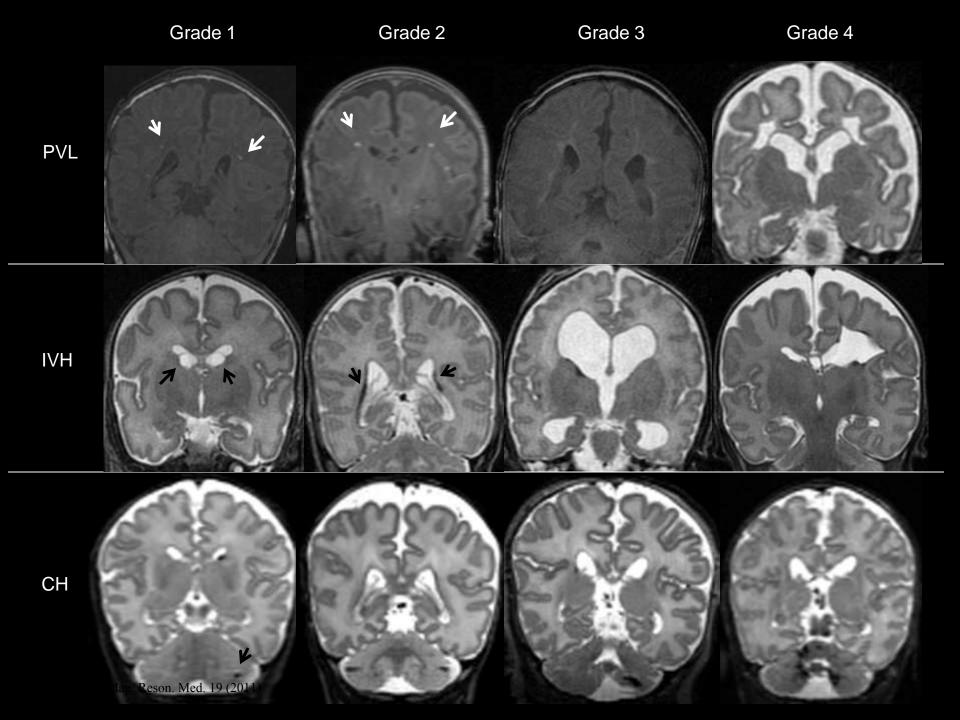
1 - 400th

MRI WMI at Term Predicts Neurodevelopmental in the Premature Infant


Extent of White Matter Abnormality								
Outcome	None (N=49)	Mild (N=78)	Mod. (N=26)	Severe (N=7)	F/X ²	р		
M (SD) MDI score	92.5	85.3	77.6	69.7	124.8	<.0001		
	(15.7)	(14.2)	(17.2)	(25.2)				
M (SD) PDI score	94.6	90.9	80.1	56.2	36.8	<.0001		
	(13.6)	(11.0)	(17.5)	(25.4)				
% Cognitive delay (>2SD)	6.5	15.3	29.6	50.0	10.80	.008		
% Motor delay (>2SD)	4.3	4.7	25.9	66.7	32.3	<.0001		
% Cerebral palsy	2.0	6.0	24.1	66.7	25.7	<.0001		

Woodward LJ et al NEJM 2006; 355(7):685-94.

Prediction of outcome - MRI scan


- Cerebral palsy (approximately 10%) were predicted with high sensitivity 85% and specificity 84 - 89%.
- Moderate/severe cognitive deficits (30%) were predicted with high sensitivity 89-90% and lower specificity 25-31%.
 - Woodward et al NEJM 2006; 355(7):685-94
 - Dyet LE et al. Pediatrics. 2006;118(2):536-548.
 - Mirmiran M et al. Pediatrics. 2004;114(4):992-998.

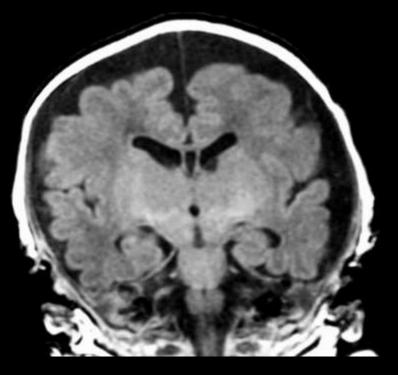
DEHSI (n=160)

DEHSI and Outcome

	I	Π	Ш	IV	V	Ρ
	N=12	N=35	N=32	N=50	N=22	
MDI, scores(SD)	83.0(20.7)	84.1(17.1)	82.2(18.5)	90.1(18.2)	80.6(21.8)	0.24
Delayed MDI<70, n	3(23.1)	5(14.3)	5(15.6)	6(11.8)	6(27.3)	0.52
(%)						
PDI, scores(SD)	89.6(20.0)	87.2(19.7)	85.3(18.0)	89.9(15.2)	91.3(11.6)	0.68
Delayed PDI<70, n	2(15.4)	5(14.3)	6(18.8)	5(9.8)	2(9.1)	0.77
(%)	_()	,	0()		_(01_)	
Cerebral Palsy, n (%)	1	2	1	1	0	0.67

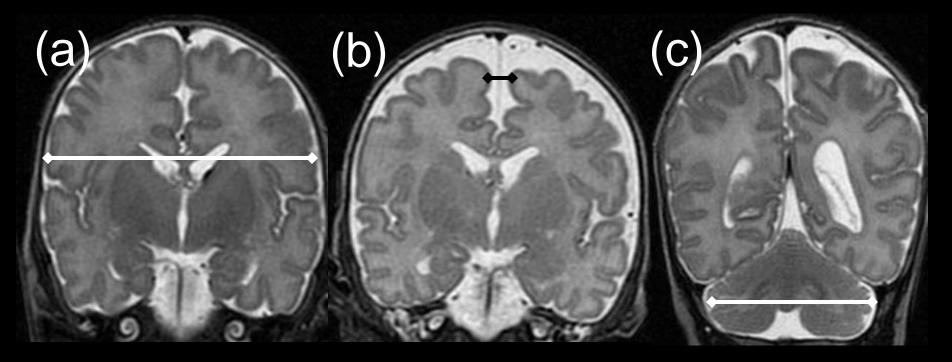
PVL							
	Grade 4						
	Grade 3						
	Grade 2						
	Grade 1						
IVH							
	Grade 4						
	Grade 3						
	Grade 2						
	Grade 1						
СН							
	Grade 4						
	Grade 3						
	Grade 2						
	Grade 1						
No injury Proc. Intl. Soc.	. Mag. Reson. M	220 ed. 19 (2011)	86.4(17.9)	28(13.5)	89.4(15.3)	21(10.1)	10(4.5)


		No.	MDI	MDI<70	PDI	PDI<70	Cerebral palsy
			Score (SD)	No. (%)	Score (SD)	No. (%)	No. (%)
PVL		34					
	Grade 4	4	49.3(18.5)	3(75.0)	49.3(18.5)	3(75.0)	4(100)
	Grade 3	5	61.2(20.4)	3(60.0)	55.6(29.4)	4(80.0)	4(80.0)
	Grade 2	14 ^c	82.6(13.5)	3(21.4)	85.1(11.5)	1(7.1)	3(21.4)
	Grade 1	11 ^d	85.7(20.5)	2(18.2)	86.2(18.3)	1(9.1)	1(9.1)
IVH		53					
	Grade 4	13	76.1(22.6)	4(30.8)	72.3(16.2)	4(30.8)	6(46.2)
	Grade 3	2	72.5(5.0)	2(100)	75.5(12.0)	1(50.0)	1(50.0)
	Grade 2	16	85.6(15.4)	1(6.3)	89.7(11.8)	0	1(6.3)
	Grade 1	20	88.1(14.1)	3(15.0)	90.9(12.4)	2(10.0)	1(5.0)
СН		22					
	Grade 4	1 ^e	84	0	84	0	0
	Grade 3	2 ^f	75.5(10.6)	1(50)	77.0(1.4)	0	1(50.0)
	Grade 2	4 ^a	88.8(6.7)	0	95.3(12.2)	0	1(25.0)
	Grade 1	15 ^b	84.3(15.6)	4(26.7)	87.4(17.6)	3(20.0)	2(13.3)
No injury Proc. Intl. Soc.	Mag. Reson. M	220 ed. 19 (2011)	86.4(17.9)	28(13.5)	89.4(15.3)	21(10.1)	10(4.5)


BRAIN INJURY

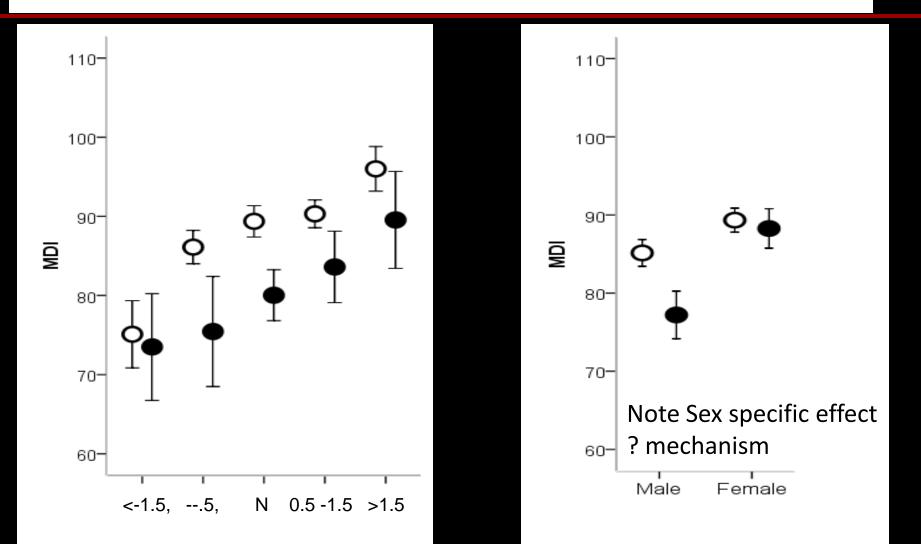
BRAIN DEVELOPMENT

More than IVH, CH and White Matter


Diffuse Encephalopathy of Prematurity

Inder *TE et al J Peds 2003;143:171-9*

Evaluating Brain Growth at Term

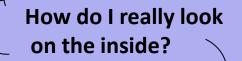


Smaller brain width relates to growth in-utero and multiple birth. Brain width was related to cognitive outcomes at 2 years of age.

Enlarged interhemispheric space is commoner in males and influenced by dexamethasone exposure.

Fentanyl use is associated with reduction in cerebellar width

Small or hypoplastic brain



Conclusion - Neuroimaging

- Magnetic Resonance Imaging
 - All term infants with encephalopathy
 - All preterm infants <30 weeks gestation
 - At discharge or term equivalent
 - Define cerebellar hemorrhage and white matter lesions
 - Quantify cerebral growth

What does your local practice reflect?

- Magnetic Resonance Imaging
 - Do you undertake MRI scans in all term encephalopathic infants?
 - Do you undertake MRI in any preterm infants?
 - What is the quality of your MRI scans like?
 - Do you undertake any CT scans in any infants?
 - Do you use any sedation?
 - Who interprets the MRI scans?
 - Do you have a regular NICU neuroradiology session?

6