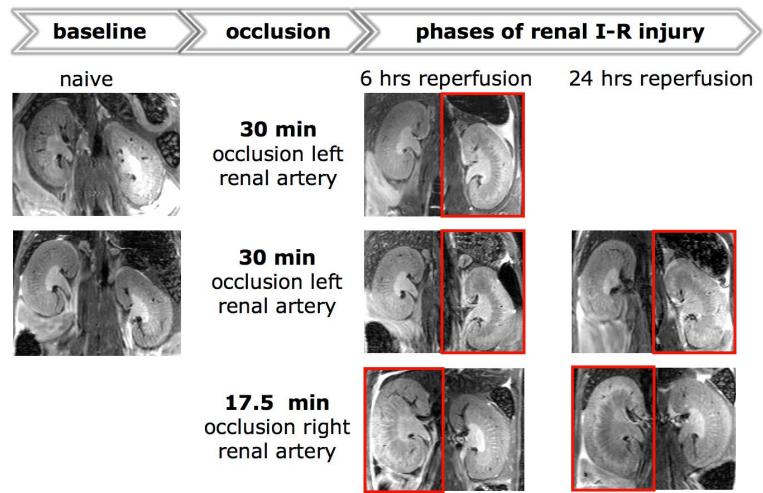
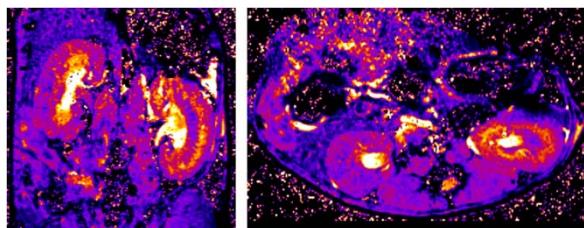


MRI Characterization of Pathophysiological Changes in a Mouse Model of Acute Kidney Injury (AKI)

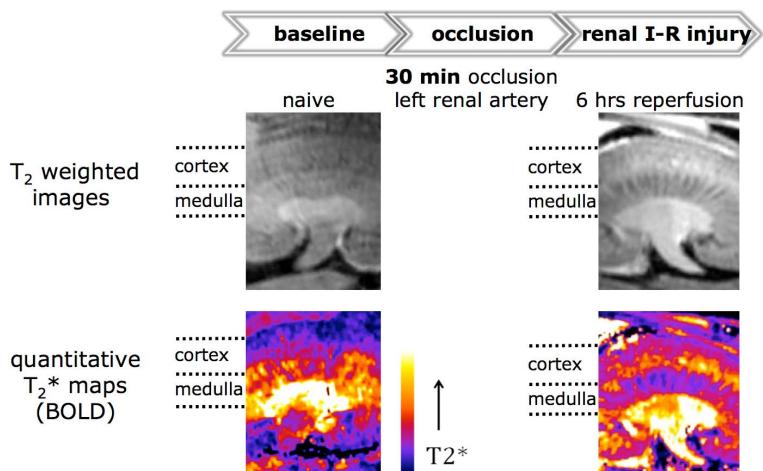
A. Pohlmann¹, L. Marko^{2,3}, B. Wagenhaus¹, U. Hoff⁴, E. Seeliger⁵, D. N. Mueller^{2,3}, and T. Niendorf⁴

¹Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Berlin, Germany, ²Max Delbrueck Center for Molecular Medicine, Berlin, Germany,

³Experimental and Clinical Research Center, Charité University Medicine, Berlin, Germany, ⁴Clinic for Nephrology, Charité University Medicine, Berlin, Germany,



⁵Institute of Vegetative Physiology, Charité University Medicine, Berlin, Germany

Introduction: Renal medullary hypoperfusion and hypoxia play a key role in acute kidney injury (AKI). The incidence of AKI in hospitalized patients shows an increase of approximately 11% per year [1]. A widely accepted hypothesis is that AKI of various origins share one common link in the pathophysiological chain of events that ultimately leads to AKI: Imbalance between renal medullary oxygen delivery and oxygen demand. Although a variety of methods to assess renal hemodynamics and oxygenation *in vivo* are established (e.g. blood sampling, ultra-sound flow probes, Laser-Doppler probes, fluorescence-quenching probes), these invasive measurements are limited to short time periods (one experiment) and/or probing only a very small region of the kidney. MRI offers the possibility to assess tissue oxygenation and oedema (via T_2^* (BOLD) and T_2 contrast respectively) for the whole kidneys, repeatedly and non-invasively. The objective of this work was to demonstrate the feasibility of characterizing alterations in renal hemodynamics and oxygenation under (patho)physiological conditions such as renal ischemia/reperfusion injury (I-R model).


Materials and Methods: Animal models. We imaged 4 male BL6 mice (weight approx. 20g) *in-vivo* under isoflurane anesthesia (1.0-2.5% in 50% air / 50% O₂): one naive animal (M1), one animal (M2) 6hrs after a 30-minute ischemia-reperfusion, one animal naive, 6hrs and 24hrs after a severe 30-minute I-R (M3), and one animal 6hrs and 24hrs after a mild 17.5-minute I-R (M4). Experiments complied fully with local institutional ethical and legal requirements. **MR Imaging.** Coronal T_2 w images and T_2^* w images with different echo times were acquired on a 9.4T Bruker Biospec (Ettlingen, Germany) using a four-element mouse cardiac optimized surface coil array. T_2 w imaging: RARE (factor 8), TE = 41ms, FOV/mtx/res = 35x30mm/384x196/0.09x0.15mm, 2 slices of 0.3mm thickness. T_2^* w mapping: MGE, TE/FA = 3,7,11, 15,19ms/30°, FOV/mtx/res = 35x30mm/256x192/0.14x0.16mm, 2 slices of 0.34mm thickness. TR for both sequences was 900-1200ms (resp. triggered, RARE used flip-back). **Analysis.** MGE data were converted to T_2^* -maps using the Bruker ISA tool.

Results and Discussion: T_2 w and T_2^* w images of naïve kidneys and the untouched reference kidneys after unilateral I-R showed the same contrast, while the kidneys that underwent I-R all showed strong changes of contrast in the cortex and medulla (Fig.1): the medulla became darker (T_2 decrease), and the cortex brighter (T_2 increase). Even after mild I-R clear changes were observed, which differed from those after a severe I-R and particularly highlighted the cortex-medulla interface. T_2^* -mapping showed equally dramatic changes in a more quantitative manner as demonstrated in Fig.2.

Conclusions: Our results suggest that *in-vivo* MRI characterization of pathophysiological changes in mouse model of AKI is not only feasible but also a rather sensitive method. The future objective of our work is to study renal hemodynamics and oxygenation by means of a new multi-modality approach that combines comprehensive MRI techniques with modern invasive measurements under physiological conditions and in a model of ischemia/reperfusion injury.

Fig. 1: T_2 -weighted images acquired prior (left), after 6 hrs (middle) and after 24 hrs (right) of unilateral I/R-I (marked in red) using a severe (top and center) and mild (bottom) I/R mouse model. Images are from animals M1 and M2 (top row), M3 (middle row), and M4 (bottom row). For T_2 -weighted imaging a spatial resolution of $0.1x0.15x0.3$ mm³ was accomplished. Strong signal intensity changes were found after ischemia followed by reperfusion. I/R resulted in a T_2 increase in the cortex.

Fig. 2: T_2 -weighted images (top) and T_2^* maps (bottom) of a mouse kidney prior (left) and after unilateral I/R-I (right). The corticomedullary T_2^* gradient observed for normal conditions (left) is reversed after I/R-I (right). Images are from animals M1 and M2. (LEFT): The corresponding T_2^* -maps in axial and coronal view at 6hrs after I-R.

Reference: [1] Xue JL et al. J.Am.Soc.Nephrol. 17:1135-1142, 2006.