Finite Element Simulations of ¹²⁹Xe Gas Diffusion in Models of Lung Airways

J. Parra-Robles¹, S. R. Parnell¹, S. Ajraoui¹, X. Xu¹, and J. M. Wild¹

¹Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

Introduction

MR diffusion experiments using hyperpolarized noble gases are sensitive to lung microstructure [1-2]. Due to their very different free diffusion coefficients, ³He and ¹²⁹Xe may be sensitive to different length scales of acinar structure. In this work, we investigate short-range ¹²⁹Xe diffusion in a model of acinar airways using finite element computer simulations. The results of these simulations are compared to previous ³He diffusion numerical and experimental results; and their implications for the development of a quantitative theoretical model for lung morphometry based on ¹²⁹Xe diffusion MR are discussed.

Methods

Computer simulations were performed by solving the Bloch-Torrey equation using finite element method (Comsol Multiphysics). The geometric model consists of a central alveolar duct with branching nodes at both ends (Fig.1). The apparent diffusion coefficients (ADC) with gradients parallel (D_L) and perpendicular (D_T) to the central duct axis [3] were computed for a wide range of diffusion times (Δ = 0.5-6 ms) and gradient strength (G= 0-40 mT/m). The bulk ADC was obtained from the superposition of signals obtained for 91 uniformly oriented angular orientations of the gradient.

Results and Discussion

Diffusion experiments can be represented as trajectories in a diagram that describes the interplay between length scales (diffusion length l_D , gradient dephasing length l_G , and structural length l_S) [4]. In Fig 2, trajectories corresponding to 129 Xe and 3 He experiments are shown, for structural lengths in the range found in acinar airways: $l_S=0.25$, 0.38 and 0.5 mm. It can be appreciated that, while for 3 He at low G, diffusion is restricted for all three sizes; in the case of 129 Xe, only for the smallest structure is diffusion restricted. For the larger l_S , diffusion is free at low G.

These predictions are confirmed by the computer simulations, as shown in Fig. 3. For ¹²⁹Xe, there is a significant difference in apparent diffusivity between the intra and extra-alveolar spaces, while for ³He, the differences in diffusivity are dominated by the distance from branching nodes. These results suggest that unlike ³He, the ¹²⁹Xe diffusion signal may be modelled using a two compartment model (e.g. bi-exponential signal decay), with these compartments being physically distinct (i.e. intra and extra-alveolar space). This also suggests that ¹²⁹Xe diffusion MR may be more sensitive to alveolar destruction than ³He, in agreement with previous predictions [5].

From Fig. 3, it can also be appreciated that the reduced diffusivity of 129 Xe also makes branching effects less significant, which may help avoid some of the limitations that quantitative approaches, such as the cylinder model [1], face with 3 He. The cylinder model predicts D_L to decrease linearly with increasing b value for a broad range of diffusion times, but it has been demonstrated that 3 He shows a non-linear increasing behaviour for Δ > 2.5 ms [6]. 129 Xe shows a linearly decreasing D_L over a broader range of diffusion times (Fig. 4), which may significantly simplify the development of accurate theoretical models of 129 Xe diffusion.

Conclusions

The numerical simulations presented here suggest that ¹²⁹Xe short range diffusion experiments may be more sensitive to alveolar structure than ³He, while being less sensitive to branching effects. This may simplify the development of ¹²⁹Xe-based MR lung morphometry techniques, which could be based on a two compartment model rather than variants of the cylinder model.

References

- [1] Saam et al. Magn. Reson. Med. 2000, 44: 174-179
- [2] Yablonskiy et al, PNAS 2002, 99(5): 3111-3116
- [3] Sukstanskii et al, J. Magn. Reson. 2008, 190: 200-210
- [4] Parra-Robles et al, J. Magn. Reson. 2010, 204: 228-238
- [5] Fichele et al. Proc. ISMRM, 2005: 1832
- [6] Parra-Robles et al, ERS Annual Congress, 2010: E5284.

Acknowledgements

Funding from Marie Curie Actions, EU Phelinet project and EPSRC Grant EP/D070252/1

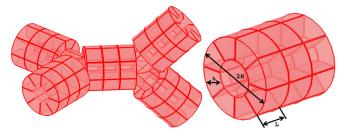


Figure 1. Geometric model of acinar airways: L=240 μm, R=350 μm and h= 200 μm.

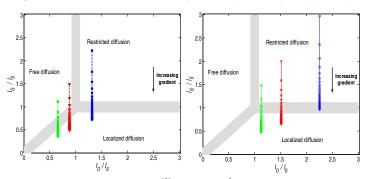


Figure 2. Diffusion diagrams for 129 Xe (left) and 3 He (right) gas mixtures, for structural sizes: $l_s = 0.25$ (circles), 0.38 (triangles) and 0.5 mm (squares).

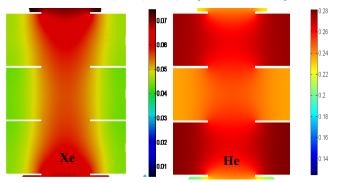


Figure 3. Distribution of diffusivities D_L (in cm²/s) in the central duct for ¹²⁹Xe (in air, D_θ = 0.14 cm²/s. Δ = 4 ms) and ³He (in air, D_θ = 0.88 cm²/s. Δ = 1.8 ms). Gradient oriented vertically.

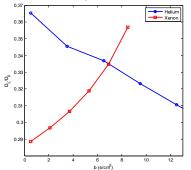


Figure 4. Longitudinal diffusivity as a function of b value for 3 He and 129 Xe for $\Delta = 4$ ms. Unlike 3 He, 129 Xe still shows a linearly decreasing D_L for this diffusion time.