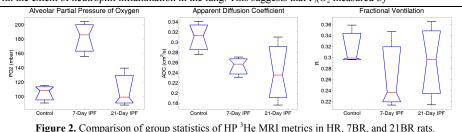
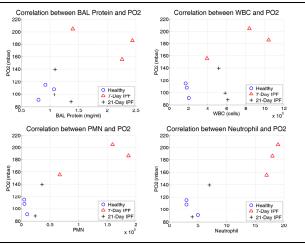
Hyperpolarized Helium Measurements of P_AO₂ Correlate with Neutrophil Inflammation in the Rat Bleomycin Model

P. Mongkolwisetwara¹, E. B. Arguiri², K. Emami¹, Y. Xin¹, N. N. Kuzma¹, S. J. Kadlecek¹, Y. Xu¹, H. Profka¹, M. Christofidou-Solomidou², M. D. Rossman², M. Ishii³, and R. R. Rizi⁴

¹Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States, ²Pulmonary Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States, ³Otolaryngology–Head & Neck Surgery, Johns Hopkins University, Baltimore, Maryland, United States, ⁴Radiology, University of Pennsylvania, Philadelphia, Pennsylvania


INTRODUCTION: Hyperpolarized (HP) ³He MRI is a technique sensitive to both lung structure (airway size through Apparent Diffusion Coefficient, ADC) and function (alveolar PO₂ and fractional ventilation, *r*) through direct imaging of respiratory gas molecules. In this work, we investigated correlated changes of these metrics with bronchoalveolar lavage (BAL) measurements and biochemistry in a rat model of interstitial fibrosis secondary to bleomycin.

METHODS: Male Sprague Dawley rats (n=9, 300~350g body weight) were given intra-tracheal bleomycin and 7 (7BR) and 21 (21BR) days after intratracheal bleomycin, they underwent HP 3 He MRI to measure r, ADC and P_AO_2 . The animals were


intubated and connected to a custom-designed small animal ventilator. This ventilator is capable of delivering the breathing gas with an accuracy of $\pm 100 \mu L/breath$ and real-time monitoring of peak inspiration pressure (PIP). For ventilation imaging, a series of 10 HP gas breaths (³He:O₂, FIO₂=20%) was delivered to the rat at the designated tidal volume V_T = 1.0ml/100g, and one image was acquired after each breath during a 350-ms breath-hold. The HP 3 He signal build up in the rat lung was then recursively solved for r to yield the fractional ventilation map, as described earlier [1]. For ADC imaging, rats were ventilated with five identical breaths of HP ³He:O₂ (4:1) at the designated inflation level followed by a 3-sec breath-hold during which five diffusion-weighted images were acquired corresponding to b-values = 0.00, 3.73, 2.18, 1.00 and 0.00 s/cm². This procedure was repeated immediately with identical but reversed polarity diffusion gradient b-values. These 10 diffusion-weighted images were then combined to yield the ADC map of the imaged slice according to a double-acquisition diffusion imaging scheme described earlier [2]. For P_AO₂ imaging, rats inhaled a series of 5 breaths of ³He:O₂ followed by a short 6-sec breathhold, during which images were acquired at a set of predefined delay times, and the resulting images corresponding to the same slice/delay combination were then averaged and fit to a model of O2-induced decay and respiratory gas redistribution as described earlier [3]. Images were acquired using a diffusion-weighted gradient echo imaging pulse sequence with centric phase-encoding in a 50-cm bore 4.7-T MRI scanner (Varian Inc) equipped with a 12-cm, 25-G/cm gradients and a 2-3/4"-ID quadrature 8-leg birdcage body coil (Stark Contrast). Images were acquired in the middle coronal slice of the rat lung with the following imaging parameters: FOV= 6×6 cm², ST=6mm, MS= 64×64 , $\alpha=4\sim5$ °, TR=6.6ms, and TE=4ms. Diffusion sensitizing gradient was applied along the phaseencoding (L-R) direction with the following timing parameters: $\Delta=1$ ms, $\delta=200\mu$ s, and τ =180 μ s according to the naming convention of [4]. Upon conclusion of imaging, BAL was performed for measurement of white blood cell (WBC) numbers and differential, and BAL protein content as a measure of lung damage. The right lung was fixed for histology and the left lung for measurement of hydroxyproline, a measure of fibrosis. Healthy rats (HR) were similarly tested. Values were expressed as mean ± SD and statistical significance was determined by pairwise t-tests.

RESULTS AND DISCUSSION: Figure 1 shows a representative map of P_AO_2 , ADC, and r in HR, 7BR, and 21BR rats. **Figure 2** shows that the overall mean of ADC were not significantly reduced in 7BR $(0.25\pm0.10~\text{cm}^2/\text{s})$ and 21BR $(0.24\pm0.07~\text{cm}^2/\text{s})$ compared to HR $(0.31\pm0.11~\text{cm}^2/\text{s})$. The means of r were also not significantly reduced in 7BR (0.23 ± 0.15) compared to the HR (0.33 ± 0.17) and returned towards normal in 21BR (0.31 ± 0.16) . In contrast, **Figure 3** shows the P_AO_2 was significantly (p < 0.05) increased in 7BR $(175.0\pm24.8~\text{mbar})$ compared to HR $(108.2\pm4.4~\text{mbar})$ and returned toward HR in 21BR $(99.07\pm21.55~\text{mbar})$. Both the number (r=0.868) and percent (r=0.833) of neutrophils in the BAL fluid was significantly (p < 0.01) correlated with the P_AO_2 but there was no significant correlation between BAL cells or protein with ADC or r. Hydroxyproline was unchanged in 7BR but was significantly increased in 21BR (HR=64.3,7BR=53.1,21BR=95.7~ug/ug lung tissue,p < 0.05).

CONCLUSION: In the rat model of pulmonary fibrosis due to bleomycin, P_AO_2 correlated with the extent of neutrophil inflammation in the lung. This suggests that P_AO_2 measured by

Figure 1. Representative maps of P_AO_2 , ADC, and r in HR, 7BR, and 21BR rats.

Figure 3. Correlations between P_AO₂ and biological markers.

HP ³He MRI can be a sensitive indicator of pulmonary inflammation and may help with predicting prognosis, and helping with drug development as a non-invasive measure of lung function.

REFERENCES: [1] Emami K, et al., Magn Reson Med. 2010; [2] Emami, K, et al. Proc Intl Soc Mag Reson Med 2007; [3] Kadlecek et al., Proc Intl Soc Mag Reson Med 2009; [4] Yu, J, et al. J Magn Res Imag 2007.