Fully automated measurement of total adipose tissue volume using quantitative chemical shift MRI: Phantom
Validation
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INTRODUCTION. Accurate identification and quantification of total adipose tissue (TAT) volume is a key first step for segmentation and
measurement of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT), which are critical metrics in diagnosis and
treatment of obesity-related diabetes, cardiovascular disease, and metabolic syndrome (1-3). Anthropometric measurements of waist
circumference, waist-hip ratio, and body mass index (BMI) are widely used clinically to
indirectly characterize TAT, VAT and SCAT, but are highly prone to systematic error (4-5)
and correlate poorly with actual adipose tissue volumes (6-7). Qualitative segmentation using
empirical signal thresholds and manual segmentation of adipose tissue on T1-weighted MRI is
considered the reference standard for direct VAT measurement, but is prohibitively time-
consuming for clinical use. Qualitative manual segmentation is also subject to partial volume
effects at fat-water and fat-void interfaces, potentially leading to significant errors and poor
repeatability in TAT/VAT/SCAT estimation. Chemical shift-based fat/water MRI methods are
more accurate than T1-weighted MRI for visualizing adipose tissue (8-9) and potentially
permit more rapid adipose tissue segmentation (10-11) by applying a simple fat-fraction
threshold. However, the quantitative accuracy of chemical shift methods is confounded by
relaxation effects (12-14) and spectral complexity of fat (13, 15), resulting in significant
errors in fat-fraction values (16-17). Also, to avoid partial volume effects at signal boundaries,
the fat-fraction threshold for adipose tissue is typically defined as 50%, implicitly assuming a
maximum fat fraction (7,,4x) of 100%, but in vivo adipose tissue also contains organelles,
blood vessels, and water components which result in a true 77, < 100%. Therefore, 7;,4x/2 is
a more physiologically meaningful choice for adipose tissue thresholding, which can be
directly measured from quantitative fat-fraction maps. The purpose of this work is to describe
a quantitative chemical shift-based fat/water MRI method for fully automated estimation of
Muax and volume of TAT. To assess the robustness of the TAT volume measurement with
respect to partial volume effects, we employ a series of oil phantoms with varying volume and
surface area complexity, using agar gel, glass rods, and empty plastic vials.
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FIGURE 1. Noise-masked fat-fraction
maps for each oil phantom of varying
volume and surface area complexity.
The fat-fraction values are nearly unity
in oil and nearly zero in agar and the
signal void regions of air and glass.

METHODS. A phantom comprised of nine bottles of peanut oil, with varying oil volumes
(250 cc, 500 cc, and 750 cc) and increasing surface area complexity (oil, oil with 2% agar
spheres, and oil with 2% agar spheres, glass rods, and air cavities) was constructed to test the
performance of the TAT estimation algorithm (Figure 1). MR images were acquired on a
clinical 3.0 T MRI scanner (GE Healthcare, Waukesha WI) using a 32-channel phased-array body coil (Neocoil, Pewaukee WI). The
acquisition used a single-slab 3D multi-echo spoiled gradient-echo (SPGR) pulse sequence (18) with 6 echoes/TR and 1.2 ms echo spacing
(13, 15), and flip angle of 3° to minimize T1-weighting bias (12). Data was acquired in the sagittal plane with 44.8 cm FOV, 148 x 148
matrix and 160 slices of 2 mm, interpolated to 1.75 x 1.75 x 1.0 mm’. Auto-calibrated parallel imaging (ARC) (19) accelerated the
acquisition by a factor of 5.32, for total scan time of 26 sec. Fat and water images were reconstructed offline and used to generate
quantitative fat-fraction maps with full dynamic range of 0-100% (12). A custom thresholding algorithm was then applied to fat and water
data to automatically suppress background noise and signal voids from glass and air cavities. The maximum fat-fraction value 7,y was

estimated using histogram analysis, with identical value in all bottles of 0.98 + 0.0 An

750 ” - “adipose mask™ was then defined as all voxels of the noise-masked fat-fraction map with
L7 values greater than or equal to7,,,y /2. The TAT volume was then obtained by multiplying the
_ L7 number of voxels in the adipose tissue mask by the single-voxel volume. Total processing time
s 500 ¢ 7 of raw fat and water data to TAT volume was < 5 min and required no user intervention.
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E . RESULTS. The automated algorithm accurately measured TAT volume in each phantom,
= it with maximum error under 3% of the known volume of oil (p > 0.44). The accuracy of the
2 V4 . . . . .
2 ’ algorithm was unaffected by increasing surface area of fat-water and fat-void boundaries
g 250 ¥ 3 wol (Figure 2).
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L7 mOIL, AGAR DISCUSSION. The automated TAT algorithm was immune to partial volume effects,
e A OIL, AGAR, VOID providing highly accurate measurements of TAT even at the higher levels of surface area
0 complexity.
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