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Introduction: The universal short-time behavior [1] of the diffusion coefficient in d spatial dimensions, Eq.(1), allows one to determine the surface-
to-volume ratio S/V of restrictions in porous materials [2, 3] and in biological tissues [4]. However, the direct measurement of D(t) with pulse field 
gradient (PFG) diffusion-weighted NMR at millisecond time scales is often technically challenging, especially in vivo. A more convenient way to get 
into the short-time limit is by applying the oscillating gradient (OG) method [5], where the diffusion weighting is effectively accumulated over many 
periods of oscillation. A variant of this technique requires a constant diffusion gradient, with the temporal modulation achieved by applying periodic 
refocusing radiofrequency pulses of the CPMG type [5, 6]. 
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     In view of applying the oscillating techniques [5, 6], an immediate question is, What is the counterpart of Eq. (1)? As t~1/ω, where ω is the 
gradient oscillation frequency, the t1/2 term in Eq. (1) must transform in the frequency domain to ~ω-1/2, cf. Eq.(2). Quite remarkably, the prefactor Cd 
in this expression has never been explicitly derived, except for the case of a finite number of CPMG echoes in d=1 dimension [7, 8]. Furthermore, 
there exists a discrepancy between its numerical value provided by different groups [9-12]. 
     In this work, we find the prefactor Cd exactly both for the OG and CPMG cases [Eqs. (6) and (7) below] in the limit of a large number N>>1 of 
oscillations, which is practically applicable for high oscillation frequencies in accord with the requirement of short diffusion time for the validity of 
Eq. (1). We show that the exact prefactor values for the infinite OG and CPMG trains differ by less than 1% from each other [Eq. (7)], thereby 
justifying the view of the CPMG method as being basically equivalent to the OG, and validate the approximate numerical values found in Ref. [9] for 
the CPMG and of Ref. [10] for the OG. To derive our result, we utilize the recently established one-to-one correspondence between the PFG and OG 
diffusivities using the effective-medium description of diffusion in disordered materials [13,14]. 
 
Methods: We begin with the known approximation to the diffusion-weighted signal, S, for weak gradients [15, 16]:   
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The signal depends on the gradient wave form g(t) with total duration T (here γ is the gyromagnetic ratio). In Eq.(3), we went from the time to the 
frequency representation, which in this context proves especially convenient. The power spectrum ‹v-ωvω› of molecular velocity is just the Fourier 
transform of the autocorrelation function ‹v(t1)v(t2)› with respect to the time interval t1–t2. The OG diffusivity (2) is then DOG(ω)=½‹v-ωvω› [5,6,15]. 
The key problem is to find ‹v-ωvω› for the system in which the time-dependent PFG diffusion coefficient has the form (1) due to restrictions. 
     In Ref. [14], we derived a general relation that connects ‹v-ωvω› and the PFG diffusivity D(t) for any medium. This relation involves the following 
fundamental object, the complex-valued dispersive diffusivity D(ω), which is a retarded response function relating the Fourier harmonic J(ω,r) = – 
D(ω)·∂rΨ(ω,r) of the current J(t,r) of diffusing particles to the corresponding frequency harmonic of a lump of particle density Ψ(t,r). The diffusivity 
D(ω) enters the generalized diffusion equation –iωΨ(ω,r) = D(ω) ∂r

2 Ψ(ω,r), whose solution yields ‹x2›/2t ≡ D(t), the PFG diffusivity. It is given by 
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We show that its real part Re D(ω) = ½‹v-ωvω› ≡ DOG(ω) [14]. This links the diffusive response D(ω) to the OG attenuation with N>>1 oscillations.  
 
Results: Substituting the second term of Eq. (1) into Eq. (4), we find the universal high frequency limit (5) of the dispersive diffusivity. This can be 
also derived from the ω→∞ limit of D(ω) found in Ref. [13]. Taking the real part of Eq. (5) we arrive at our main result, Eq.(6), in d dimensions.   
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The above value of Cd contradicts the calculation reported in Refs. [11, 12], where the corresponding prefactor is about six times greater than our C3. 
Numerical simulations of Ref. [10] reproduce the above results within 3% accuracy. For CPMG in a constant gradient, with the OG frequency ω=π/τ, 
where 2τ is the interval between successive echoes, the corresponding coefficient is given by Eq.(7). The approximate numerical limit (Ref. [9]) of 
the calculation [7, 8] for the finite number of pulses performed in the time domain agrees well with the exact value (7). 

 
Discussion: Our approach shows that the exact prefactor Cd, Eq. (6) [and its CPMG modification (7)], of the high-frequency limit, is as universal and 
independent of the system’s geometry as is the corresponding coefficient 4/3d√π in the original t-dependent result (1), due to the equivalence of the t 
and ω representations. The generality of this derivation underscores the utility of the dispersive diffusivity D(ω). We also note that in general, the 
concept of the effective diffusion time [17] is defined only as an order-of-magnitude estimate, t~1/ω. Indeed, the relations between D(ω) and D(t), 
such as Eq.(4), are nonlocal integral relations in time or in frequency [14, 13], i.e. to determine D(ω) one needs to know D(t) for all t, and vice-versa. 
The knowledge of D(ω) allows one to calculate the effect of restrictions for an arbitrary gradient wave form g(t) using the Fourier representation (3). 
In particular, one can substitute into Eq.(3) the Fourier transform qω obtained from g(t) defined as a numerical table in magnet's software. 
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