Can we separate the contributions of permeability and diffusion of contrast agent? A simulation study.
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Introduction There is a growing interest in Dynamic Contrast Enhanced (DCE) MRI to characterize, using a contrast agent (CA), tumor perfusion and
microvasculature. Current DCE approaches generally use a global parameter which concatenates two phenomena: filtration across the vascular wall (i.e. permeability)
and diffusion of the CA in the interstitium [1]. These two phenomena describe two different aspects of the tumor, however. It would thus be of interest to estimate
separately these two contributions. In this study, we evaluate, using a novel numerical simulation approach, an MR experiment designed for this purpose. In this MR
experiment, one fills the vessels with ultra-small superparamagnetic iron oxide (USPIO) particles to generate susceptibility gradients around the vessels. These particles

do not extravasate. Then, one monitors the extravasation of a Gd-chelate using a dynamic, multi-gradient-echo, sequence.

Material and methods The simulation, with a time step 5t=1ms, was performed at 4.7T and is organized as follows. Geometry: a
70x70um? plane, described by a 560% matrix, where 5 randomly spread capillaries (radius 3um) occupies 3% of the plane surface
(Fig.1). Capillaries are filled with a concentration of USPIO (3.3mM) constant over time. Arterial input function (AIF): The time
evolution of Gd concentration in vessels, C,, is described by an AIF corresponding to a slow bolus injection. For each 8t and during
200s, one computes: (i) Extravasation of Gd from the capillaries to their peripheries (one pixel wide, concentration C,) using Eq. (1)
[1]. We used k,.=1.8:107 s [2] This value is denoted ko and is used as reference value. (ii) Diffusion of Gd is obtained by convolving
the Gd concentration matrix, denoted [Gd], with a Gaussian kernel (Eq. (2)) [3]. We used Dge=4.6-10" m?s™ [4]. This value is denoted
D, and is used as reference value. As this convolution is performed in k-space, the periodization handles edge effects and ensures matter
conservation. (iii) Magnetic field is computed using the Fourier transform of the magnetic susceptibility matrix Ay (Eq. (3)) to also
benefit from the periodization [5][6]. At each matrix point, we considered the magnetic susceptibility in vessels — that of blood
(Ax=0.0422 ppm, for SO,=60% and H.=40%) + that of USPIO (Ax=0.213 ppm) — and in tissue — that of Gd (Ay=ymx[Gd], with
¥m=3.4-107 mM™). (iv) Relaxation constants T, and T, are calculated in each points of the plane based on [Gd]. (v) Magnetization
relaxation is described by Bloch's equation (Eq. (4)). (vi) RF excitation: at each TR=625ms, the application of a radio-frequency pulse
is described by rotating the magnetization matrix. (vii) The MR signal is computed at 12 TE ([1.35- 30.126]ms) by summing the
complex transverse magnetizations across the plane. Signal analysis: to describe the signal-time curves, we used two characteristic
times: the time t., for which signal intersects the pre-bolus baseline, and the time T, for which the signal is minimum (Fig.2a).

Fig. 1: [Gd] in cut plane of
voxel. Gd concentrations
vary between 495uM (blue)
and 498uM (red).
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Results and discussion Fig.2a shows the signal evolution for
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Conclusion We propose a new approach to simulate a DCE
experiment which accounts for relaxivity and susceptibility effects, %5 015 20 2% 3 0 5 10 _15 20 25 30
and for extravasation and diffusion of CA. Results indicate that k. TE (ms) TE (ms)
estimates measured at short echo times are not sensitive to the |Fig. 2 (a) MR signal for several values of TE with slow bolus injection of Gd. (b) MR signal for
diffusion of CA. Moreover, at long echo times, it seems that the |gifferent values of Dea. In gray insert: Definition of t.; and Ty (c) and (d) Evolution of t., and
diffusion of CA in interstitium could be characterized. Tyin as function of TE for various values of Dgg and kp..

Ay : Ij“o.u'rier tra.nsform of the magnetic y=2.6810°rad.s™ .T"
susceptibility matrix;
ky and ky: coordinates in the Fourier domain.
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of proton;

B= "é" : norm of magnetic field vector.

References [1] P S Tofts. IMRI, 1997. [2] M. Beaumont et al. Journal of Cerebral Blood Flow, 2009. [3] L. M. Klassen et al. Biophysical Journal, 2007.
[4] B. Marty. ISMRM, 2010. [5] K. M. Koch et al. Physics in Medicine and Biology, 2006. [6] J. P. Marques et al. Concepts in Magnetic Resonance, 2005.

Proc. Intl. Soc. Mag. Reson. Med. 19 (2011)

792



