

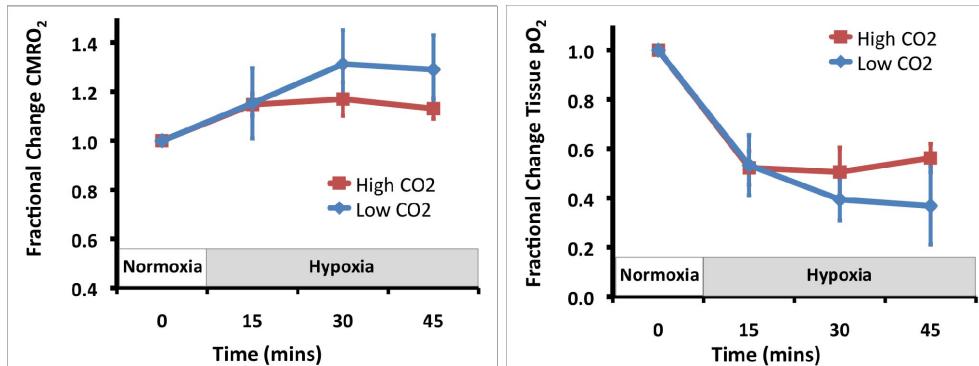
Elevated CO₂ mitigates the rise in CMRO₂ during acute hypoxia and improves cerebral tissue oxygenation

Z. M. Smith¹, J. S. Hunt, Jr.¹, E. Li¹, J. Guo¹, D. D. Shin¹, R. B. Buxton¹, and D. J. Dubowitz¹

¹Radiology, University of California San Diego, La Jolla, CA, United States

Introduction: The brain has a high-energy demand and a low tolerance for interruptions of oxygen (O₂) availability. We previously reported increased cerebral metabolic rate of O₂ (CMRO₂) during sustained hypoxia, despite limited O₂ availability[1]. The biological rationale for this paradoxical response is unclear, and is the motivation for the present study

In general, changes in cerebral tissue oxygenation (PtO₂) depend on the balance of changes in arterial PaO₂, cerebral blood flow (CBF), and the cerebral metabolic rate of O₂ (CMRO₂), providing several potential mechanisms for controlling tissue oxygenation (PtO₂). This balance of O₂ supply and demand in the cerebral tissues is further complicated by the influence of arterial carbon dioxide (PaCO₂) since CBF and CMRO₂ are both independently impacted by PaO₂ and PaCO₂.


CMRO₂ in the human brain can be determined with MRI from measures of oxygen extraction fraction and CBF. Further, PtO₂ in cerebral tissue can be estimated from an O₂ diffusion model we have developed [2]. We applied these methods to investigate the influence of PaCO₂ on the paradoxical rise in CMRO₂, and on the PtO₂ in hypoxic conditions.

Measurements: 11 healthy subjects (age 27 +/- 6 yrs) participated in 2 groups; one group (n=5) freely modulated their end-tidal CO₂ during FIO₂=0.125 hypoxic conditions (“low CO₂ group”), while another group (n=6) experienced the same hypoxic conditions but had their end tidal CO₂ clamped at normoxic levels (“high CO₂ group”).

Venous T₂ was measured using a modified TRUST (T₂ relaxation under spin tagging) MRI technique with BIR4 pulses for T₂ preparation [3] and a single shot spiral readout (TE=2.8ms, TR=8s, TI=1.2s, 4 echoes, 10 mm slice, 80 mm tag, 4.5 mins). CBF was measured using phase-optimized pseudocontinuous arterial spin labeling (optPCASL) ASL technique (TE=3.3ms, TR=4.2s, temporal bolus=2s, 5 mm slices, 5 mins). Measurements were made as repeated blocks of CBF and T₂ measure during normoxia and over a period of 45 mins of hypoxia. CBF measurements were corrected for physiological noise and the effect of O₂ desaturation on T₁ of blood. T₂ measured with TRUST were calibrated against a prior control group [1] (previously scaled such that OEF= 0.4 & CMRO₂=1.6 mmol/g/min in normoxia).

Results: The mean CMRO₂ during normoxia was 1.58 +/- 0.18 mmol/min in the group with unrestrained (“low”) CO₂ (ETCO₂=33.9 +/- 2.6 torr), and 1.69 +/- 0.27 mmol/min with clamped (“high”) CO₂ group (ETCO₂=36.4 +/- 1.6 torr). Over 45 minutes of hypoxia the mean CMRO₂ rose to 2.01 +/- 0.45 mmol/min with low CO₂ (29% rise), and 1.92 +/- 0.43 mmol/min (10% rise) with high CO₂. Over the same interval estimated PtO₂ fell from 25 mmHg to 9.2 +/- 7.9 mmHg during low CO₂ (73% fall), and to 13.0 +/- 2.4 mmHg with high CO₂ (44% fall).

Discussion: PaCO₂ influences both CMRO₂ and PtO₂ during hypoxia. Reduced PaO₂ may cause a fall (or no change) in CMRO₂, and an increase in CBF [4,5] (an appropriate response to low O₂ availability). However, reductions in PaCO₂ increase neuronal firing and hence increase CMRO₂ [6], accounting (in part) for the paradoxical CMRO₂ response during acute hypoxia. The low PaCO₂ also decreases CBF. This high CMRO₂ / low CBF combination likely acts to compound the PtO₂ decline in hypoxic conditions. PaCO₂ thus represents an important covariate in the cerebral response to hypoxia.

Figures show fractional changes in CMRO₂ (left) and cerebral PtO₂ (right) during 45 min acute hypoxia (O₂=12.5%). Blue curve is unrestrained CO₂ (“low CO₂”). Red curve is CO₂ clamped to normoxia level (“high CO₂”). The paradoxical increase in CMRO₂ is partially mitigated when CO₂ remains high. High CO₂ also improves cerebral tissue oxygenation during acute hypoxic conditions.

References: [1] Krizay et al. 2010 *Int Soc Magn Res Med*: 721. [2] Buxton 2010. *Front Neuroenerg*: 1-16. [3] Wong et al. 2010 *Int Soc Magn Res Med*: 2853. [4] Dyer et al. 2008 *Respir Physiol* 128: 263-76. [5] Hochachka et al. 1994 *J Cereb Blood Flow Metab* 14: 671-79. [6] Dulla et al. 2005 *Neuron* 48: 1011-23. **Supported by:** NIH NS 053934 (DJD). NIH NS 36722 (RBB).