

T. Jin¹, and S-G. Kim¹

¹Neuroimaging laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States

Introduction The chemical exchange saturation transfer (CEST) approach, based on the hydroxyl-water proton exchange, can provide valuable information on the concentration of glycogen, glycosaminoglycans, and myo-inositol [1-3], etc. Compared to the well-studied amide-water proton exchange for which a long and low-power irradiation pulse is generally adopted, the faster hydroxyl-water proton exchange suggests that a higher irradiation pulse power would be necessary to optimize the chemical exchange (CE) contrast. Unfortunately, given the smaller chemical shift between the hydroxyl and water protons, this would also lead to a larger direct water saturation effect. Recently, it was reported that a similar CE contrast can be obtained with a frequency offset-dependent spin-locking (SL) approach which minimizes the contamination of the direct water saturation effect [4]. In this work, we evaluated the hydroxyl-water CE contrast with the CEST and SL approaches.

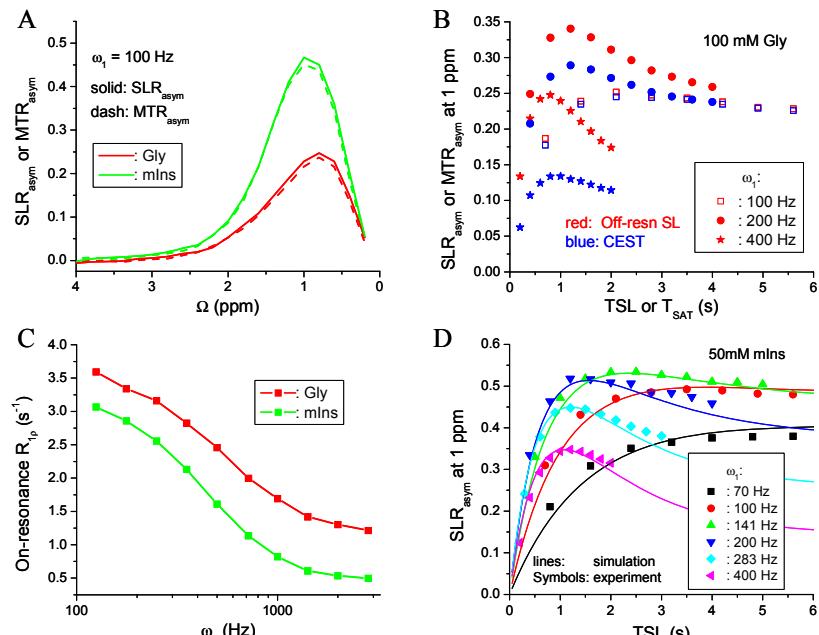
Theoretical background In a CEST experiment, the signal intensity as a function of irradiation pulse frequency Ω is referred to as the Z-spectrum. The chemical exchange contrast is usually measured by $MTR_{asym}(\Omega) = MTR(-\Omega) - MTR(\Omega) = [M_{CEST}(-\Omega) - M_{CEST}(\Omega)]/M_0$. Assuming a two-site exchange and that the populations of two exchanging proton pools are highly unequal—*i. e.* $p_A \gg p_B$ ($p_A + p_B = 1$) where p_A and p_B are the relative populations of the water and labile proton, respectively—Trott and Palmer recently reported for SL experiments that the spin-lattice relaxation rate in the rotating frame R_{1p} ($= 1/T_{1p}$) can be expressed as [5]:

$$R_{1p} = R_1 \cos^2 \theta + (R_2 + R_{ex}) \sin^2 \theta, \quad \text{where } R_{ex} = \frac{p_B \cdot \delta^2 \cdot k}{(\delta - \Omega)^2 + \omega_1^2 + k^2} \quad (1)$$

where R_1 is the longitudinal relaxation rate of water, R_2 is the intrinsic water transverse relaxation rate in the absence of chemical exchange, ω_1 ($= \gamma B_1/2\pi$) is the Rabi frequency of the SL pulse, $\theta = \arctan(\omega_1/\Omega)$ is the angle between the effective B_1 field and B_0 , and δ and k are the chemical shift and exchange rate between the labile protons and water, respectively. To study the CE effect, SL relaxation dispersion experiments can be performed at the water resonance ($\Omega = 0$) as a function of ω_1 [4]. SL experiments can also be performed as a function of offset frequency (Ω), similar to a CEST Z-spectrum. The magnetization at a spin-locking time (TSL), with repetition time $\rightarrow \infty$, is [4]:

$$\frac{M_{SL}(\Omega)}{M_0} = \frac{(R_2 + R_{ex}) \sin^2 \theta}{(R_2 + R_{ex}) \sin^2 \theta + R_1 \cos^2 \theta} \cdot \exp\left[-[(R_2 + R_{ex}) \sin^2 \theta + R_1 \cos^2 \theta] \cdot TSL\right] + \frac{R_1 \cos^2 \theta}{(R_2 + R_{ex}) \sin^2 \theta + R_1 \cos^2 \theta} \quad (2)$$

Similar to the MTR_{asym} parameter in CEST studies, an asymmetry parameter can be defined as the normalized differential signal acquired from opposite frequency offsets with respect to water: $SLR_{asym}(\Omega) = SLR(-\Omega) - SLR(\Omega) = [M_{SL}(-\Omega) - M_{SL}(\Omega)]/M_0$.


Methods MRI experiments were performed on a 9.4-T magnet with a 38-mm inner diameter volume coil. 100mM Glycogen (Gly) and 50mM Myo-inositol (mIns) were dissolved in PBS (pH = 7.4) and measured at room temperature. EPI images were acquired after either an SL preparation pulse with duration TSL or a CEST irradiation pulse with duration T_{sat} , and the imaging parameters were: field of view = 24×24 mm², matrix size = 64×64 , slice thickness = 5 mm, and the repetition time was 18 s. For CEST Z-spectra and Ω -dependent SL spectra, images were collected within ± 10 ppm of the water resonance, using a 5-s SL or CEST irradiation pulse with $\omega_1 = 100$ Hz. To calculate SLR_{asym} and MTR_{asym} , control images were acquired at the offset frequencies of ± 300 ppm. SLR_{asym} and MTR_{asym} were also measured at 1 ppm with varied ω_1 and TSL or T_{sat} . Finally, on-resonance R_{1p} dispersion was measured in the range of ω_1 of 125 to 2828 Hz. p_B , δ , k , and R_2 were obtained by fitting the on-resonance R_{1p} dispersion data to Eq. (1). From these fitted results, SLR_{asym} as a function of TSL and ω_1 were simulated for $\Omega = 1$ ppm using Eq. (2).

Results and discussions For Gly and mIns, SLR_{asym} and MTR_{asym} lineshapes that were measured with $\omega_1 = 100$ Hz were similar, with MTR_{asym} being slightly smaller (Fig. A). The peak occurred at 1 ppm (400 Hz at 9.4 T) for mIns and 0.8 ppm for Gly. The difference between SLR_{asym} and MTR_{asym} at 1 ppm increases with ω_1 , as shown in Fig. B for the Gly sample (not shown for mIns). This is because CEST studies are susceptible to the direct water saturation effect, which increases with the saturation pulse power. With increasing ω_1 , the peak of SLR_{asym} and MTR_{asym} shifted to a smaller TSL or T_{sat} , and the maximum contrast occurred at $\omega_1 = 200$ Hz and $TSL \approx 1.2$ s. Both mIns and Gly samples showed large on-resonance R_{1p} dispersion (Fig. C). Fitting to Eq. [1] gave $p_B = 0.003$ and 0.002, $\delta = 370$ and 400 Hz (2323 and 2513 rad/s), $k = 1250$ and 1980 s⁻¹, and $R_2 = 0.4$ and 1.15 s⁻¹ for the mIns and Gly samples, respectively. $k/\delta = 0.54$ and 0.79 for mIns and Gly indicates that both hydroxyl-water proton exchanges were close to the intermediate exchange regime.

Using the fitted results of mIns and a measured R_1 of 0.35 s⁻¹, the SLR_{asym} that was simulated from Eq. (2) (lines, Fig. D) matched very well with the experimental data (symbols, Fig. D), indicating that SL data can be explained well with the asymmetric population model [5]. For mIns, the peak of SLR_{asym} occurred at $\omega_1 = 141$ Hz and $TSL \approx 2$ s. The observed shift of SLR_{asym} peak is different with the general conception from previous slow chemical exchange studies, in that the CE contrast was maximized at the steady state with a long saturation pulse. Using the fitted data of mIns, with $\omega_1 = 141$ Hz, $R_{ex} = 8.56$ s⁻¹ at $\Omega = 1$ ppm and 0.73 s⁻¹ at $\Omega = -1$ ppm. Although the hydroxyl resonance frequency was at $\Omega = 1$ ppm (with respect to water), the non-zero R_{ex} at $\Omega = -1$ ppm caused by exchange broadening reduced the SLR_{asym} at long TSL values. The shift of the SLR_{asym} peak to a shorter TSL was dependent on the metabolite concentrations p_B , T_1 , and T_2 of water. For example, with a lower p_B , a higher ω_1 is necessary to see the shift in SLR_{asym} peaks (simulation data not shown). In summary, our results show that the SL approach is a good choice for the study of water-hydroxyl chemical exchange effects.

Acknowledgments: This work is supported by NIH grants EB008717, EB003324, EB003375, and NS44589.

References: [1]. Van Zijl PCM et al., *PNAS* (2007). [2]. Ling W et al., *PNAS* (2008). [3]. Haris M et al., *NeuroImage* in press. [4]. Jin T et al., *MRM* in press. [5] Trott O et al., *JMR* (2002).

Figure (A) SLR_{asym} and MTR_{asym} lineshapes, measured with $\omega_1 = 100$ Hz, are quite similar. **(B)** For Gly, the difference in SLR_{asym} and MTR_{asym} measured at 1 ppm increases with ω_1 . **(C)** Both Gly and mIns samples show large on-resonance R_{1p} dispersion. **(D)** Experimental SLR_{asym} data for mIns for varied TSL and ω_1 values match well with the simulated results.