

Magnetization Transfer Imaging of Individual Beta-Amyloid Plaques in Alzheimer's Disease

M. D. Meadowcroft^{1,2}, Z. G. Herse¹, J. R. Connor³, and Q. X. Yang¹

¹Radiology - Center for NMR Research, Pennsylvania State University - College of Medicine, Hershey, PA, United States, ²DMCP - Neuroimaging, Bristol-Myers Squibb, Wallingford, CT, United States, ³Neurosurgery, Pennsylvania State University - College of Medicine, Hershey, PA, United States

Introduction: Our previous research (1,2) into further understanding the transverse relaxation and image contrast associated with beta-amyloid (A β) plaques in Alzheimer's disease (AD) illuminated that transverse T₂* relaxation and contrast seen in T₂* weighted images of A β plaques is associated with both plaque morphology and iron content. This data indicated that iron content and plaque composition synergistically cause the additive effect upon transverse relaxation. Iron content, while a factor in the MR imaging of plaques, alone is not responsible for the hypo-intensities seen on the MR images and that the dense fibrillar nature of the A β plaques has a major role in shortening of the transverse relaxation in human AD tissue. The fibrillar organization and hydrophobic / hydrophilic polypeptide regions which comprise the beta-amyloid plaques presents an ideal setting for hydration water protons to bond to the surface of the A β macromolecule architecture via dipole-dipole interactions.

Using magnetization transfer (MT) imaging it should be possible to pre-saturate the A β bound protons with an off-resonant frequency-selective rf pulse within the broad spectral line of the bound proton pool thus augmenting the relaxation of free water. Previous research has shown that quantitative MT ratio (MTR) differences are present in AD brain regions compared to normal controls (3,4). The goal of this research was to build upon previous histological MR imaging to quantitatively measure MT associated with A β plaques. To our knowledge, this is the first demonstration of quantitative MT measurements associated with individual A β plaques. Detailed histological MR examination using ultra-high resolution micro-MR imaging techniques in comparison to traditional histology methods of human AD tissue samples are described.

Methods: Entorhinal cortex brain tissue samples from clinically and histologically determined AD subjects (N=5) were used throughout the study. Tissue samples fixed with paraformaldehyde and cryogenically protected with sucrose were cut at 60 μ m using a cryostat, rinsed with phosphate buffered saline (PBS) to eliminate any residual fixative and sucrose and prepared for micro-imaging within the 7.0 T histological coil (1, 2) on a Bruker MedSpec 7.0T system. For relaxation MR imaging an eight echo T₂* MGE sequence and eight echo T₂ MSME scans were utilized with a matrix of 512² and a final pixel resolution of 45 μ m x 45 μ m in the through-plane direction. MT-weighted images were acquired using a set of five gradient echo FLASH sequences with Gaussian modulated pre-saturation pulses located at frequency offsets Δf =1.0, 2.5, 5.0, 10.0 and 15.0 kHz with respect to the central 1H Larmor frequency. Quantitative parametric MT ratio (MTR) maps were calculated by comparing the MT images acquired at different offset frequencies (M_{Δf}) to the data without pre-saturation (M₀): MTR=100*(M₀-M_{Δf})/M₀. Data was prepared and calculated using in-house IDL and Matlab scripts as well as NIH ImageJ software. Following histological MR imaging, the slices were co-stained with Thioflavin-S for A β plaque detection and a Perl's - Diaminobenzene stain for ferric iron. Regions of interest (ROI) for A β plaques, surrounding gray matter, and white matter were defined on the T₂* weighted echo-summed MGE images using the histological stains for positive plaque verification. These ROI's were imported and overlaid on the MTR parametric map data and detailed MTR's were quantified for individual plaques and all other ROI's.

Results: Figure 1 shows a T₂* weighted MR images (far left), Thioflavin-S stain (middle left), Δf =15kHz MTR parametric map (middle right) and Perl's stain (far right) same human AD tissue samples. All images have the same region expanded in the bottom row. The MR and histology stains show the characteristic MR hypo-intensities, fluorescence and focal iron associated with the A β plaques. Beta-amyloid plaques in these enlarged images are emphasized with red arrows. The MTR parametric map shows focal regions of high MTR associated with A β plaques (green arrows) whose location directly compares to the T₂* and histological data.

MT-weighted images were acquired using a set of five gradient echo FLASH sequences with Gaussian modulated pre-saturation pulses located at frequency offsets Δf =1.0, 2.5, 5.0, 10.0 and 15.0 kHz with respect to the central 1H Larmor frequency. Quantitative parametric MT ratio (MTR) maps were calculated by comparing the MT images acquired at different offset frequencies (M_{Δf}) to the data without pre-saturation (M₀): MTR=100*(M₀-M_{Δf})/M₀. Data was prepared and calculated using in-house IDL and Matlab scripts as well as NIH ImageJ software. Following histological MR imaging, the slices were co-stained with Thioflavin-S for A β plaque detection and a Perl's - Diaminobenzene stain for ferric iron. Regions of interest (ROI) for A β plaques, surrounding gray matter, and white matter were defined on the T₂* weighted echo-summed MGE images using the histological stains for positive plaque verification. These ROI's were imported and overlaid on the MTR parametric map data and detailed MTR's were quantified for individual plaques and all other ROI's.

Results: Figure 1 shows a T₂* weighted MR images (far left), Thioflavin-S stain (middle left), Δf =15kHz MTR parametric map (middle right) and Perl's stain (far right) same human AD tissue samples. The T₂* MR images show characteristic MR hypo-intensities associated with A β plaques and iron deposition, whose location is verified with the histological stains. The parametric MTR images show regions with a high concentration of macromolecular bond protons as bright on the heat map parametric maps. The method is confirmed with the high MTR associated with white matter tracks due to the high myelin lipid content in these regions. Individual plaques are able to be resolved as single or small groupings of 45 μ m x 45 μ m voxels on the MTR parametric images. Figure 2 shows a graph of the MTR associated with the A β individual plaques, gray matter and white matter ROI's. The A β plaque MTR is higher than the surrounding gray matter and approached the MTR value of white matter, demonstrating that tightly bound protons are present on the surface of the A β macromolecule architecture.

Discussion: Our previous research illustrated that transverse T₂* MR contrast seen in images of A β plaques is synergistically associated with both plaque morphology and iron content. It was not clear how the A β plaque morphology caused the associated MR hypo-intensities which guided our investigation further. MTR imaging of individual plaques was the next feasible method to tease apart this relationship. To our knowledge, this data represents the first magnetization transfer imaging of individual A β plaques and builds upon previous MT research showing that regions known to contain high A β plaque loads have different MTR's from surrounding non-plaque burdened regions. The macromolecular architecture of the A β plaques is ideal for hydration water protons to bond to the component A β fibrils via dipole-dipole interactions. The data represents a required step forward in understanding the cause of the transverse relaxation associated with the structure A β plaques and helps provide a foundation for the future high resolution A β plaque clinical imaging.

References: 1 – Meadowcroft *et al.* Mag. Reson. Med. 2007; 57(5): 835-841, 2 – Meadowcroft *et al.* JMRI 2009; 29(5): 997-1007, 3 – Kiefer *et al.* NeuroImage 48 (2009) 657-667, 4 – Ridha *et al.* Radiology 2007; 244(3): 832-837.

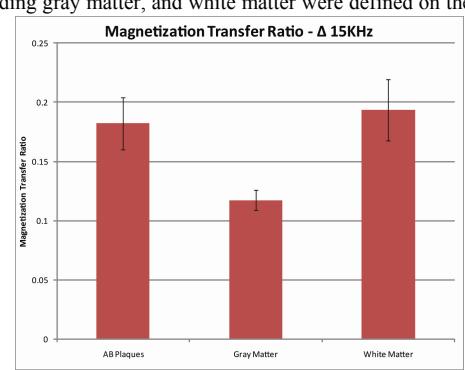
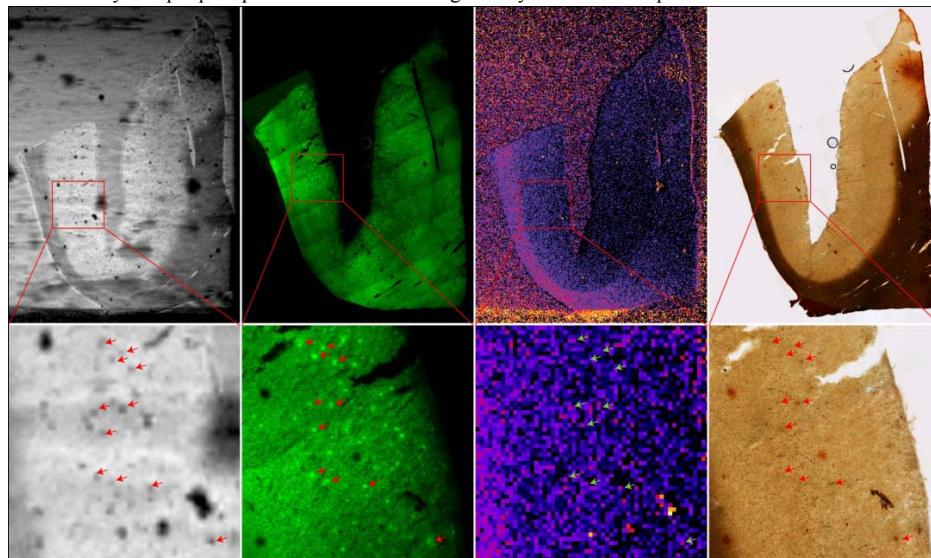



Figure 2: Focal MTR's obtained from individual A β plaques, gray matter and white matter. The individual A β plaques have a higher MTR compared to the surrounding gray matter, approaching that of white matter.