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INTRODUCTION 
Early detection of Alzheimer’s dementia (AD), critical for treatment success, is a high priority research area. The development of disease-modifying treatment strategies 
requires objective characterization techniques and quantitative biomarkers able to identify AD with higher accuracy and at a much earlier stage than clinically based 
assessment [1]. Given that structural magnetic resonance imaging (MRI) (e.g. T1 -weighted) on 1 to 3 Tesla clinical scanners allows the in vivo assessment of these 
changes, it has been proposed to fulfill the role of quantitative biomarker in AD [2-4]. To this end we have proposed a single, high-dimensional morphological metric 
called the disease evaluation factor (DEF) extracted from T1-weighted MRI and estimated its efficiency in discriminating cognitively normal, control subjects (CTRL) 
from probable AD patients in a single-center setting [5]. However, multi-centric research studies (e.g. the Alzheimer’s Disease Neuroimaging Initiative or ADNI [6]) 
and especially clinical applications (e.g. trials and care) require any metric to be robust to scanner-dependent signal variations, which blur the intensity correspondence 
between tissue classes across images. In this report we demonstrate the robustness of our DEF metric through analysis of within-session scan-repeat scan images from 
the multi-centric ADNI setting and estimate the cohort size increase at various difference levels due to this minimum detection threshold. 
 
METHOD 
Datasets – In this study we used data from three different studies, totaling 1097 subjects from 58 centers, with respective IRB approvals. First, we required two 
independent subject groups to build our high-dimensional metric. The first was the Mapping group, consisting in 150 subjects from the ICBM database [7], and scanned 
in Montreal, Canada on a Philips Gyroscan 1.5T scanner (Best, Netherlands) using a T1-weighted fast gradient echo sequence (sagittal acquisition, TR=18 ms, TE=10 
ms, 1mm X 1mm X 1mm voxels, flip angle 30°). The second was the Classification group, which consisted in 75 probable AD and 75 CTRL subjects from the 
LENITEM database [8], scanned in Brescia, Italy on a single Philips Gyroscan 1.0T scanner (Best, Netherlands) using a T1-weighted fast field echo sequence (sagittal 
acquisition, TR=25 ms, TE=6.9 ms, 1mm X 1mm X 1,3mm voxels). Finally, the Test group consisted in 1594 baseline MRIs (scan + same-session repeat scans) from 
797 CTRL, mild cognitive impairment and probable AD subjects participating in ADNI, acquired on 56 different 1.5T scanners using a similar 3D T1-weighted MP-
RAGE protocol [9].  

Initial image processing - We processed all MRI volumes identically using the MINC image processing toolbox 
(http://www2.bic.mni.mcgill.ca) and local software as follows: a) noise removal [10]; b) raw scanner intensity inhomogeneity 
correction [11]; c) global registration (12 degrees of freedom) [12] to the reference image space defined by the BrainWeb T1-
weighted image [13] (1-mm resolution, 0% noise, 0% non-uniformity), maximizing the mutual information between the two 
volumes [14]; d) resampling to a 1-mm3 isotropic grid; e) linear clamping to a set [0-100] intensity range; f) non-linear 
registration of individual standardized subject images to the BrainWeb reference; and g) computation of determinants of the 
Jacobian of the deformation field [15]. 
Mapping and classification spaces - We generated a low-dimensional feature space with the Mapping group using Principal 
Components Analysis (PCA) of (a) T1w MRI intensity z-score maps, as a proxy of tissue composition; and (2) log-
determinants maps, as a proxy of tissue atrophy. We then projected identical data from the Classification group into the space 
defined by the PCA vectors, and used a system of supervised linear classifiers to identify a restricted set of eigenvectors {λf} 
forming an hyperplane that best separated the two classes under study (CTRL vs. probable AD). Finally, we projected ADNI 
scan/repeat scan data in the {λf} eigenvector space. 
High-dimensional metric - The morphological DEF metric is based on the concept of distance within the space defined by 
eigenvectors {λf}. Specifically, we calculated the Mahalanobis distance for each ADNI subject scan/repeat scans to the origin 
of the high-dimensional space, and then the difference between each each scan/repeat scan pairs. Finally, we estimated the 
minimum trial size required to detect an effect superior to that threshold using conservative power assumptions. 
 
RESULTS 
Over the 797 subjects of the ADNI dataset, the average scan/repeat scan distance was 1.7% (95% CI: 0.1% – 3.3%)(see figure). 
As reported previously [5], the difference in DEF averages between probable AD and CTRL was 15%. At this level, the 
minimum trial size required to detect this difference is 59 individuals for both samples (α = 0.05; β = 0.50). Due to the 1.7% 
minimum precision threshold of the technique, to reach identical power the trial size must increase to 75 individuals. 

 
CONCLUSION 
We proposed a high-dimensional morphological metric and demonstrated its robustness in a multi-centric setting. While the resulting minimum precision threshold 
resulted in increased number of subjects, trial sizes remain vastly inferior to other metrics, e.g. neuropsychological tests. A major strength of the current study is the use 
of a large, multi-centric dataset. 
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