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INTRODUCTION: Over the last few years, the combination of Compressed sensing (CS) and parallel imaging have been of great interest to accelerate MRI. For 
dynamic MRI, K-t sparse SENSE (K-t SS) has been proposed [1] for combining the CS based K-t Sparse method [2] with SENSE. Recently, K-t group sparse method 
(K-t GS) [3] has been shown to outperform K-t Sparse for single coil reconstruction, by exploiting the sparsity and the structure within the sparse representation (x-f 
space) of dynamic MRI. In this work, we propose to extend K-t GS to parallel imaging acquisition in order to achieve higher acceleration factors by exploiting the 
spatial sensitive encoding from multiple coils. This approach has been called K-t group Sparse SENSE (K-t GSS). In contrast with the previous single-coil based K-t GS 
method for which a performance parameter is manually optimized for every frequency encode; we propose an entropy based scheme for automatic selection of this 
parameter. Results from retrospectively undersampled cardiac gated data show that K-t GSS outperformed K-t sparse SENSE at high acceleration factors (up to 16 fold). 
THEORY: Let X be the signal in x-f space whose elements Xi {i=1, 2,.., N} are assigned to K distinct groups {g1,g2,..,gK} which are non overlapping and whose union 
gives the signal X. K-t GS formulation is given as:  minX||Xg||1,2 subject to ||AX - b||2  ≤  σ   (1),  where ||Xg||1,2 is the mixed l1-l2 norm given as ||Xg||1,2 
=||Xg

1||2+||Xg
2||2+.......+||Xg

K||2, ||Xg
j||2 being the l2 norm of the vector containing all elements in x-f space assigned to the group {gj} , A is the encoding matrix 

comprising the inverse Fourier transform along temporal dimension, Fourier transform along spatial dimension and the undersampling operator, b is the set of measure- 
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  Fig 1: K-t sparse   
SENSE (K-t SS) and 
K-t group sparse 
SENSE (K-t GSS) 
reconstructed cardiac 
frames (systole and 
diastole) and 
temporal profiles 
(position indicated 
by dotted line) with 
different acceleration 
factors; fully 
sampled (FS) sum of 
squares images are 
also given for 
reference. 
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METHOD: K-t GSS method comprises three steps (1) support estimation (2) group 
assignment and (3) signal recovery. For support estimation, a low resolution training scan 
is used to identify the support region in the x-f space. After zero-padded sum of squares 
(SOS) reconstruction of the multiple-coil low resolution images, a threshold is set above 
the noise level in the corresponding x-f space. The x-f space elements having intensities 
above the threshold constitute the support region. In the group assignment step, run-length 
encoding (RLE) scheme [4] is used to form groups from support region; elements in the x-
f space that are not part of the support are each assigned as an individual group. Once the 
group assignment is done, the signal recovery is performed via K-t GSS formulation in Eq 
(2). For support estimation in the single-coil K-t GS method, the threshold above the noise 
level is manually tuned for every frequency encode to obtain the optimal reconstruction 
performance. Here, we propose a retrospective entropy based automatic threshold 
selection procedure. Starting from a minimum threshold equal to the noise level in the 
SOS training x-f space, the threshold is increased in small increments of size ∆T. K-t GSS 
reconstruction is performed using support estimated from each threshold setting, with 
entropy H(x-f) computed for the reconstructed x-f space. The threshold level for which the 
entropy H(x-f) stops decreasing and gets saturated is selected to be the optimal threshold. 
EXPERIMENT: A fully sampled retrospective cardiac gated CINE SSFP sequence was 
performed on a Philips 1.5T Achieva system in a healthy volunteer. The scan parameters 
were: FOV: 320x320 mm2, TE/TR: 1.4/3.3 ms, acquisition matrix size: 160x156, 40 
cardiac phases, 5 channel cardiac coil. A separate training scan was performed for the 
estimation of support in x-f space. Training data was composed of 20 fully sampled 
central k-space lines (approximately 12.5% of fully sampled k-space data). The acquired 
data was simulated by retrospectively under-sampling the fully sampled data in k-t space 
with uniform random pattern for each coil. K-t SS and K-t GSS reconstructions were done 
with acceleration factors up to 16. The reconstructions were implemented in MATLAB 
using spectral projected gradient (SPG) based reconstruction solver [5]. 
RESULTS and DISCUSSION: Reconstructed images for two different frames (systole 
and diastole) are shown in Fig.1 for K-t SS and K-t GSS methods with different reduction 
factors.  Temporal profiles are also included in Fig.1. At very high reduction factors (16-
fold acceleration), K-t SS method exhibited noisy reconstructions with significant residual 
artifacts and temporal blurring, whilst K-t GSS eliminates most of the artifacts introducing 
less temporal blurring (see region of interest pointed by arrows in Fig.1). For a specific 
temporal profile reconstructed with K-t GSS method for 16-fold acceleration, Fig.2 shows 
the plots of relative root mean square (RMS) error of the  reconstruction and the entropy 
of reconstructed x-f space H(x-f) as a function of threshold set in SOS training x-f space. 
The reconstructed temporal profiles at selected thresholds are also shown. Both H(x-f) and 
RMS error had similar variations (87.4% cross correlation) as a function of threshold 
settings in the SOS training x-f space. For the optimal threshold setting, the reconstructed 
x-f space was less noisy and had a better definition of object features (see reconstructed 
profile labeled B in Fig 2). This resulted in low values of both the reconstruction error and 
H(x-f). For a threshold setting higher or lower than the optimal level, the reconstructions 
exhibited noisy artifacts resulting in higher values of entropy and RMS error (see 
reconstructed profiles labeled A and C in Fig. 2). Hence, H(x-f) gave a good a priori 
predictor of a posteriori reconstruction quality and RMS reconstruction error. In the 
limiting case where the threshold is set below the minimum value in the SOS training x-f 
space, the K-t GSS formulation in Eq (2) is reduced to minimum l2 norm reconstruction. 
On the other hand, for a threshold set above the maximum value in the SOS training x-f 
space, the reconstruction formulation is reduced to K-t SS formulation in Eq (1). 
CONCLUSION: By exploiting the sparsity, the structure within sparse representation and 
information from multiple coils, our method was able to achieve reconstructions with 
better spatial and temporal quality compared to the existing standard methods in dynamic 
MRI.  

ments in k-t space and σ is a parameter that controls the fidelity of the reconstruction to the 
measured data. By extending the K-t GS method to parallel MRI, instead of performing 
reconstruction for each coil separately, the  multicoil SENSE model given by concatenation of 
the individual models is solved. Let L be the number of coils, the K-t GSS formulation is given 
by:  minX||Xg||1,2 subject to || EX - B ||2 ≤  σ   (2),   where the encoding matrix E now also includes 
the coil sensitivities Ci’s, thus E=[AC1 AC2... ACL]; and B comprises M measurements each from 
L coils given as B=[b1 b2... bL]. 
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Fig. 2: For K-t GSS reconstruction (16 fold acceleration), behavior of 
the relative RMS reconstruction error and entropy of reconstructed x-f 
space H(x-f) as a function of different support estimation thresholds set 
in SOS (sum of squares) training x-f space. K-t GSS reconstructed 
temporal profiles (labeled A, B and C) at selected threshold levels are 
also shown, fully sampled (FS) profile is also given for reference. 
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