Entropy aided K-t Group Sparse SENSE method for highly accelerated dynamic MRI
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INTRODUCTION: Over the last few years, the combination of Compressed sensing (CS) and parallel imaging have been of great interest to accelerate MRI. For
dynamic MRI, K-t sparse SENSE (K-t SS) has been proposed [1] for combining the CS based K-t Sparse method [2] with SENSE. Recently, K-t group sparse method
(K-t GS) [3] has been shown to outperform K-t Sparse for single coil reconstruction, by exploiting the sparsity and the structure within the sparse representation (x-f
space) of dynamic MRI. In this work, we propose to extend K-t GS to parallel imaging acquisition in order to achieve higher acceleration factors by exploiting the
spatial sensitive encoding from multiple coils. This approach has been called K-t group Sparse SENSE (K-t GSS). In contrast with the previous single-coil based K-t GS
method for which a performance parameter is manually optimized for every frequency encode; we propose an entropy based scheme for automatic selection of this
parameter. Results from retrospectively undersampled cardiac gated data show that K-t GSS outperformed K-t sparse SENSE at high acceleration factors (up to 16 fold).
THEORY: Let X be the signal in x-f space whose elements X; {i=1, 2,.., N} are assigned to K distinct groups {g;,g,..,gx} which are non overlapping and whose union
gives the signal X. K-t GS formulation is given as: minx||X®||;» subject to [[AX - b, < o (1), where ||X¥|;2 is the mixed l;-l, norm given as [|X¥i
=(1XE ||2H[XE2|[aFeeneeeeH|| XEk |2, ||X3]l2 being the 1, norm of the vector containing all elements in x-f space assigned to the group {gj} , A is the encoding matrix
comprising the inverse Fourier transform along temporal dimension, Fourier transform along spatial dimension and the undersampling operator, b is the set of measure-
ments in k-t space and o is a parameter that controls the fidelity of the reconstruction to the
measured data. By extending the K-t GS method to parallel MRI, instead of performing
reconstruction for each coil separately, the multicoil SENSE model given by concatenation of
the individual models is solved. Let L be the number of coils, the K-t GSS formulation is given
by: miny||X®||;, subjectto || EX-B [,< ¢ (2), where the encoding matrix E now also includes
the coil sensitivities C;’s, thus E=[AC; AC,.. ACy]; and B comprises M measurements each from
L coils given as B=[b; bz, by].

METHOD: K-t GSS method comprises three steps (1) support estimation (2) group
J EXERN assignment and (3) signal recovery. For support estimation, a low resolution training scan
bedis used to identify the support region in the x-f space. After zero-padded sum of squares
- (SOS) reconstruction of the multiple-coil low resolution images, a threshold is set above
Fig 1: K-t sparse the noise level in the corresponding x-f space. The x-f space elements having intensities
SENSE (K-t SS) and iy above the threshold constitute the support region. In the group assignment step, run-length
K-t group sparse i, - . encoding (RLE) scheme [4] is used to form groups from support region; elements in the x-
SENSE (K-t GSS) ~ 3 y e f space that are not part of the support are each assigned as an individual group. Once the
reconstructed cardiac T : group assignment is done, the signal recovery is performed via K-t GSS formulation in Eq
frames (systole and K-t GSE (2). For support estimation in the single-coil K-t GS method, the threshold above the noise
diastole) and| B 2 e vel is manually tuned for every frequency encode to obtain the optimal reconstruction
temporal profiles performance. Here, we propose a retrospective entropy based automatic threshold
(position  indicated : ! t i ' = selection procedure. Starting from a minimum threshold equal to the noise level in the
by dotted line) with - - " . SOS training x-f space, the threshold is increased in small increments of size AT. K-t GSS
different acceleration = ___reconstruction is performed using support estimated from each threshold setting, with
factors: fully entropy H(x-f) computed for the reconstructed x-f space. The threshold level for which the
sample’d (FS) sum of] entropy H(x-f) stops decreasing and gets saturated is selected to be the optimal threshold.
squares images are EXPERIMENT: A fully sampled retrospective cardiac gated CINE SSFP sequence was
. performed on a Philips 1.5T Achieva system in a healthy volunteer. The scan parameters
also  given  for were: FOV: 320x320 mm’, TE/TR: 1.4/3.3 ms, acquisition matrix size: 160x156, 40
reference. cardiac phases, 5 channel cardiac coil. A separate training scan was performed for the
: estimation of support in x-f space. Training data was composed of 20 fully sampled
Ecentral k-space lines (approximately 12.5% of fully sampled k-space data). The acquired
3 r data was simulated by retrospectively under-sampling the fully sampled data in k-t space
08 a7 with uniform random pattern for each coil. K-t SS and K-t GSS reconstructions were done
with acceleration factors up to 16. The reconstructions were implemented in MATLAB
using spectral projected gradient (SPG) based reconstruction solver [5].
RESULTS and DISCUSSION: Reconstructed images for two different frames (systole
and diastole) are shown in Fig.1 for K-t SS and K-t GSS methods with different reduction
factors. Temporal profiles are also included in Fig.1. At very high reduction factors (16-
fold acceleration), K-t SS method exhibited noisy reconstructions with significant residual
artifacts and temporal blurring, whilst K-t GSS eliminates most of the artifacts introducing
4= less temporal blurring (see region of interest pointed by arrows in Fig.1). For a specific
> temporal profile reconstructed with K-t GSS method for 16-fold acceleration, Fig.2 shows
T the plots of relative root mean square (RMS) error of the reconstruction and the entropy
of reconstructed x-f space H(x-f) as a function of threshold set in SOS training x-f space.
The reconstructed temporal profiles at selected thresholds are also shown. Both H(x-f) and
RMS error had similar variations (87.4% cross correlation) as a function of threshold
settings in the SOS training x-f space. For the optimal threshold setting, the reconstructed
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——RMS Error x-f space was less noisy and had a better definition of object features (see reconstructed

0.2 L L 4.3 profile labeled B in Fig 2). This resulted in low values of both the reconstruction error and
: S Threshcl? d __Js' 20 H(x-f). For a threshold setting higher or lower than the optimal level, the reconstructions

noise optimal exhibited noisy artifacts resulting in higher values of entropy and RMS error (see
level threshold reconstructed profiles labeled A and C in Fig. 2). Hence, H(x-f) gave a good a priori

predictor of a posteriori reconstruction quality and RMS reconstruction error. In the
limiting case where the threshold is set below the minimum value in the SOS training x-f
space, the K-t GSS formulation in Eq (2) is reduced to minimum 1, norm reconstruction.
On the other hand, for a threshold set above the maximum value in the SOS training x-f
space, the reconstruction formulation is reduced to K-t SS formulation in Eq (1).

Fig. 2: For K-t GSS reconstruction (16 fold acceleration), behavior of
the relative RMS reconstruction error and entropy of reconstructed x-f
space H(x-f) as a function of different support estimation thresholds set

in SOS (sum of squares) training x-f space. K-t GSS reconstructed CONCLUSION: By exploiting the sparsity, the structure within sparse representation and

temporal profiles (labeled A, B and C? at selef:ted threshold levels are information from multiple coils, our method was able to achieve reconstructions with

also shown, fully sampled (FS) profile is also given for reference. better spatial and temporal quality compared to the existing standard methods in dynamic
MRI.
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