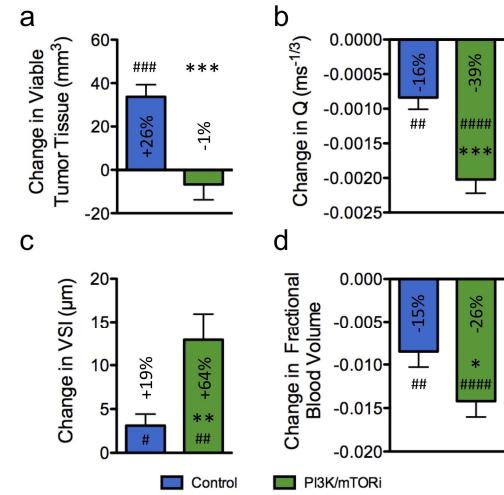


Dual PI3K/mTOR Inhibition Induces Structural Changes in Tumor Vasculature Assessed by Vessel Size Index

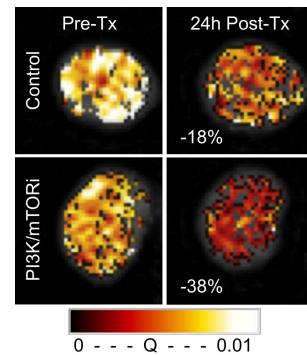
S. K. Wyatt¹, S. E. Ungersma¹, J. R. Oeh², C. Ho¹, T. C. Cao¹, H. Koeppen³, L. S. Friedman², D. Sampath², and R. A. Carano¹

¹Biomedical Imaging, Genentech, Inc, South San Francisco, CA, United States, ²Translational Oncology, Genentech, Inc, South San Francisco, CA, United States, ³Pathology, Genentech, Inc, South San Francisco, CA, United States

Objectives. Previous studies have reported a reduction in the dynamic contrast enhanced magnetic resonance imaging (MRI) parameter K^{trans} following treatment with a dual PI3K/mTOR inhibitor (PI3K/mTORi) [1]. These K^{trans} changes were attributed to an inhibition of vascular endothelial growth factor signaling through PI3K, leading to a suppression of eNOS-induced vascular permeability and vasodilation [1]. However, the effects of PI3K/mTORi on vascular structure remain unknown. This study aims to elucidate the role of PI3K and mTOR inhibition on vascular structure using an *in-vivo* multispectral vessel size index (VSI) MRI approach and *ex-vivo* micro-computed tomography (μ CT) angiography.


Methods. *Animal Model.* Animal procedures were approved by the institutional AAALAC-accredited review board. Two cohorts of athymic nude mice were inoculated subcutaneously on the hind limb with 3.5×10^6 HM7 (human colorectal cancer) cells for the independent VSI and μ CT studies.

Multispectral VSI MRI: MRI was performed on a 4.7T Varian Unity Inova MRI system with a Varian 20mm two-loop surface coil. Eight coronal, 1-mm-thick slices were acquired with a 25.6x25.6mm FOV and 64x64 (ADC, T_2) or 128x128 (T_2^*) matrix. A multi-slice, diffusion-weighted fast spin-echo imaging sequence was used to obtain ADC measurements (6 b-values from 82-1129 s/mm^2 , TR=3s, ETL=4, NEX=2, $\delta=3.3ms$, $\Delta=30ms$). T_2 and M_0 maps were acquired using a multi-slice, spin-echo imaging sequence (sems, TE=5,26,47,68 ms, TR=3s and NEX=1) and T_2^* maps were acquired using a multi-echo multi-slice gradient echo sequence (mgems, TE=5,10,15, 20,25,30,35,40ms, TR=345ms and NEX=4). Subsequently, a USPIO contrast agent (200 μ mol/kg, Molday ION, BioPAL) was delivered via tail-vein catheter and post-contrast sems and mgems sequences were repeated to calculate T_2 and T_2^* maps, respectively. Multispectral VSI MRI parameters including vessel density (Q), VSI, and fractional blood volume were calculated voxel-by-voxel in the viable tumor tissue using the ADC map and the pre- and post-contrast T_2 and T_2^* maps in a multispectral approach [2,3]. **μ CT angiography:** Upon sacrifice, mice were perfused with lead chromate latex MICROFIL (Flowtech). *Ex-vivo* tumors were imaged on a SCANCO Medical μ CT 40 system (45kV, 177 μ A, 450ms, 16 μ m isotropic voxels). The vascular network and tumor volume were automatically extracted from the images [4] and vascular density was calculated as vascular volume/tumor volume. **Experimental details:** VSI MRI was performed pre- and 24h post-tx with 10mg/kg GDC-0980 (n=9) or methylcellulose/Tween-80 (MCT vehicle control, n=9). *Ex-vivo* μ CT was performed in a 2nd cohort of mice 24h post-tx with 10mg/kg GDC-0980 (n=10) or MCT (n=10).


Results. Inhibition of the PI3K and mTOR pathways resulted in significant growth suppression of viable tumor tissue as well as changes in vascular structure as demonstrated by *in-vivo* multispectral VSI MRI (Fig 1,2) and confirmed by the independent *ex-vivo* μ CT angiography study (Fig 3). More specifically, vehicle-treated viable tumor tissue grew an average of $34 \pm 17mm^3$ in 24h ($p < 0.0005$ vs baseline), while PI3K/mTORi-treated viable tumor volume remained static ($-7 \pm 21mm^3$, $p < 0.0005$ vs control, Fig 1a). Structurally, a single dose of the dual PI3K/mTORi reduced the VSI-derived Q by 39% in 24h ($-0.0020 \pm 0.00060ms^{-1/3}$, $p < 0.0001$ vs baseline, Fig 1b,2), which was significantly reduced relative to the changes observed in the vehicle-treated tumors ($-0.00084 \pm 0.00051ms^{-1/3}$, $p < 0.0005$ vs PI3K/mTORi, Fig 1b,2). This result is further corroborated by the *ex-vivo* μ CT data demonstrating a -54% difference between control- and PI3K/mTORi-treated vascular density 24h post-treatment (Control: 0.026 ± 0.0063 , PI3K/mTORi: 0.057 ± 0.014 , $p < 0.0001$, Fig 3). In addition, PI3K/mTORi significantly increased the VSI by $13 \pm 9.1\mu m$ in 24h ($p < 0.005$ vs baseline and $p < 0.01$ vs control, Fig 1c) and decreased the fractional blood volume by -0.014 ± 0.0054 ($p < 0.0001$ vs baseline and $p < 0.05$ vs control, Fig 1d), consistent with the loss of small vessels.

Discussion. Overall, we have demonstrated the ability of multispectral VSI MRI to detect vascular structural changes *in vivo* in response to dual PI3K/mTORi, which are consistent with those observed by *ex-vivo* μ CT angiography. Furthermore, these results help elucidate the currently unknown effects of inhibiting the PI3K and mTOR pathways on vascular structure.

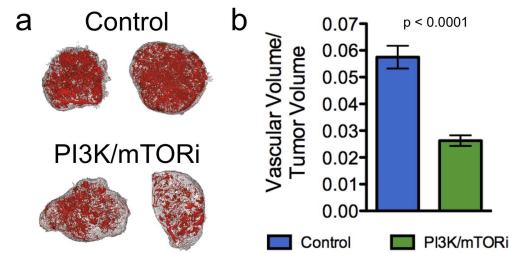

[1] Schnell *et al.*, Cancer Res. 2008; 6598-6607. [2] Berry *et al.*, MRM. 2008; 64-72. [3] Ungersma *et al.*, MRM. 2010; 1637-1647. [4] Shojaei F *et al.* Nature 2007; 450: 825-831.

Fig 1. Change in (a) viable tumor tissue, (b) Q, (c) VSI, (d) fractional blood volume 24h post-tx (avg \pm SEM). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.0005$ t-test vs control. # $p < 0.05$, ## $p < 0.005$, ### $p < 0.0005$, ##### $p < 0.0001$ in paired t-test vs pre-tx.

Fig 2. Representative viable tumor Q maps overlaid onto their corresponding M_0 images pre-tx and 24h post-tx with MCT or PI3K/mTORi.

Fig 3. (a) Representative volumetric μ CT-angiography renderings 24h post-tx with MCT or PI3K/mTORi. (b) Mean vascular density 24h post-treatment with MCT or PI3K/mTORi (avg \pm SEM). $p < 0.0001$