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Introduction: Parallel imaging techniques can be categorized roughly into two families: explicit sensitivity based methods like SENSE[1] and autocalibrating methods (acPI) like GRAPPA[2]. In this work we finally bridge the gap between these approaches. We present a new way to compute the explicit sensitivity maps that are (implicitly) used by acPI methods. These are found by Eigen-vector analysis of the k-space filtering in acPI algorithms. Our Eigen approach performs like other acPI methods when the prescribed FOV is smaller than the object, i.e., is not susceptible as SENSE to FOV limitations [3]. At the same time, the reconstruction performs optimal calibration and optimal reconstruction, as SENSE. Our approach can be used to find the explicit sensitivity maps of any acPI method from its k-space kernels. For the sake of space we only describe our approach, which estimates them directly from the calibration matrix.   
Theory:  GRAPPPA and other acPI methods like SPIRiT [4] exploit linear dependency in k-
space. Overlapping blocks in k-space (across coils) are linearly dependent, which enables the 
calibration of GRAPPA interpolation kernels. This is done by constructing a calibration matrix, 
A, and fitting the kernel, g, to the data, y, by solving a least-norm-least-squares problem Ag=y. 
The linear dependence originates from the physics that there is a single source image imaged by 
different smooth coil sensitivities. Instead of performing calibration, by computing the SVD, 
A=UΣVH we can find the support of the multi-coil data directly. Figure 1 shows that V can be clearly separated to V║ which spans the data, and V⟘ which is orthogonal to it. The reconstruction from undersampled data is then finding the missing entries for which each block in k-space is supported by V║ and not by V⟘. A similar idea was used in [5,6]. The reconstruction therefore must satisfy x=V║V║

Hx, where V║ is the aggregated operation on all 
the blocks in k-space. However, since data originates from a single source multiplied by coil 
sensitivities functions, S, it should also satisfy S=V║V║

HS. The effective sensitivities are eigen-
vectors of V║V║

H with eigen-values ‘1’. These can be explicitly calculated directly by eigen-
value decomposition in the image domain (similarly as in [7]). Figure 2 shows eigen-vectors in 
image domain that were calculated from 8-channel brain data. Indeed, the eigen-vectors with 
eigen-values `1` appear to be sensitivity maps! The eigen-vectors with eigen-value `1` can be 
used as sensitivities in any SENSE reconstruction. 
A very interesting case is when the prescribed FOV is smaller than the object. Self calibrating 
SENSE methods, like mSENSE fail to reconstruct but GRAPPA works as expected. Figure 3 
shows such a situation. In this case, there are more than one eigen-value ‘1’ at each aliased 
pixel, with other set of sensitivities. acPI methods work in this case, since they explicitly use 
these extra sensitivities. 
 
Methods and Results: 2-fold undersampled data sets were acquired using an 8-channel head 
coil, once with FOV smaller than the object in the phase encode. Eigen-value maps were 
calculated from 20x20 autocalibration lines by: 1) Constructing a calibration matrix, A, with 
[6x6] overlapping blocks 2) Computing V║ by choosing the largest 55/288 right singular vectors 
of A 3) Calculating the eigen-vectors for each pixel in image domain of V║V║

H 4) The 
calculated maps, S, are eigen-vectors with eigen-value >0.98. Data was reconstructed with 
POCSENSE [8] using eigen-value maps,  mSENSE[9] maps and with GRAPPA. The results in 
Fig. 4 show that our method has similar properties to GRAPPA, even though it was 
implemented with POCSENSE. Our reconstruction has lightly less noise in this case. Noise 
reduction compared to GRAPPA is more significant with higher accelerations.  
 
Conclusions: We presented a new method for autocalibrating parallel MRI. We showed that 
coil sensitivity maps can be calculated using an eigen-value decomposition of the operators in 
acPI. These maps can be used in a SENSE reconstruction, with all the benefits of 
autocalibration, producing robust, and optimal reconstructions.  
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Figure 2: Eigen-vector maps of V║V║
H. The eigen-

vectors with eigen-values ‘1’ appear as very accurate
sensitivity maps, both in magnitude and phase. 

Figure 1: Calibration data is reordered into a
calibration matrix, which is low-rank. Each
overlapping block in k-space is spanned by V║ 
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Figure 3: When the object is within the FOV, there is
only one eigen-value ‘1’ with a single set of maps.
When the FOV is smaller than the object, in aliased
regions there are multiple eigen-value ‘1’. Using both
sets overcomes the FOV limitation described in [3].  

Figure 4: Reconstructions from 2-fold undersampling and prescribed FOV smaller than the object. Left: POCSENSE recon with mSENSE maps.
middle: GRAPPA, right: POCSENSE recon with Eigen-vectors maps. Our reconstruction does not suffer from FOV limitation, and has less noise.
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