

T₁ Mapping: Methods and Challenges

N. Stikov¹, C. L. Tardif¹, J. K. Barral², L. Levesque², and G. B. Pike¹

¹Montreal Neurological Institute, McGill University, Montreal, QC, Canada, ²Electrical Engineering, Stanford University, Stanford, CA, United States

Purpose: In this educational abstract, we provide an overview of the main T₁ mapping methods and we outline the challenges in performing quantitative T₁ measurement. We describe the gold standard (Inversion Recovery), as well as two widely used alternative methods (Look-Locker and Variable Flip Angle) that speed up the scanning and fitting procedures at the expense of accuracy and precision. The e-poster will include sample T₁ maps of phantoms and in-vivo human brains acquired with each of the above methods, and it will provide a list of useful T₁ mapping references.

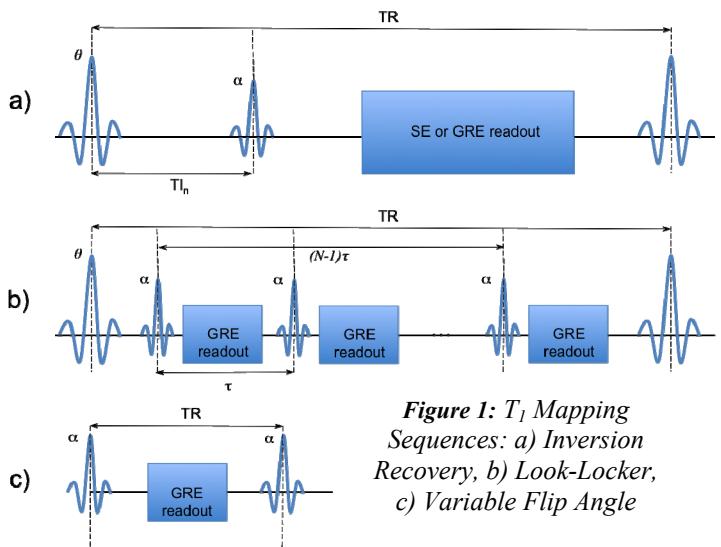
Outline of Content:

Inversion Recovery (IR) T₁ Mapping: This gold-standard method for T₁ mapping [1,2] consists of inverting the longitudinal magnetization and sampling the MR signal at several points (T_{1n}) along its exponential recovery with a time constant T₁. The IR pulse sequence is repeated N times, each time applying the same (typically adiabatic) inversion pulse, followed by different waiting times (T_{1n}), and an imaging module that can be either spin echo (SE) or gradient echo (GRE). TR must be on the order of the longest measured T₁ to achieve sufficient magnetization recovery. The general equation used for the fitting procedure is given by: $S_n = a + be^{-T_{1n}/T_1}$, where a and b are complex-valued parameters and T_{1n} is the inversion recovery time of the nth IR scan [3]. For precise and accurate measurement, it is recommended to perform at least four scans with TIs that span the range of expected T₁ values [3]. The gold-standard method does not assume a perfect inversion pulse, but it requires temperature monitoring as T₁ values change with temperature [4]. Additional simplifications can be made if TR>>T₁, or by assuming specific values for θ and α (e.g., 180° and 90°, respectively).

Look-Locker (LL) T₁ Mapping: The Look-Locker sequence is similar to the gold standard scan in that it prepares the magnetization with an inversion pulse, but instead of a single sample of the recovery curve per TR it applies a train of N low flip angle pulses spread across the TR with spacing τ [5]. The signal after the nth sampling pulse is given by: $S_n = \beta (1 - DR e^{-n\tau/T_1^*})$ where

$$\beta = \frac{M_0(1 - e^{-\tau/T_1})}{(1 - \cos \alpha e^{-\tau/T_1}) \sin \alpha}, \quad DR = -\left(\frac{\cos \alpha (1 - [\cos \alpha e^{-\tau/T_1}]^{N-1})}{1 + \cos \alpha [\cos \alpha e^{-\tau/T_1}]^{N-1}} + 1\right) \quad \text{and} \quad T_1^* = \frac{\tau}{\tau/T_1 - \ln(\cos \alpha)}.$$

This model is sensitive to field inhomogeneity because it assumes perfect RF pulses of negligible duration and no lag between the RF pulse and the readout. The sensitivity to α reduces as τ/T_1 increases, so spreading the sample points across TR improves accuracy.


Variable Flip Angle (VFA) T₁ Mapping: This method can be used to acquire 3D T₁ maps in clinically feasible times [6, 7]. It utilizes two or more spoiled gradient-echo scans with varying flip angles. The equation describing the signal behavior in a spoiled gradient echo sequence is: $S_n = \frac{PD(1 - e^{-TR/T_1}) \sin \alpha_n}{1 - \cos \alpha_n e^{-TR/T_1}}$.

This equation assumes TR>T₂* and perfect RF spoiling. Additional noise assumptions can reduce the fitting routine to a weighted least-squares procedure [8]. As is the case for the two previous methods, the VFA method should not assume perfect knowledge of the flip angle α . To account for B₁ inhomogeneities, a field map can be acquired along with the T₁ mapping scans.

Summary: We have outlined the basic pulse sequences and models for accurately mapping the T₁ relaxation time. Attention should be paid to the assumptions underlying any model simplifications, and it is always recommended to check a new method against the gold standard using simulations [9].

References:

- [1] Crawley and Henkelman, Magn Reson Med 7: 23-34 (1988)
- [2] Tofts P. Quantitative MRI of the brain: measuring changes caused by disease.
- [3] Barral et al., Magn Reson Med 64(4): 1057-1067 (2010)
- [4] Rieke and Butts-Pauly, J Magn Reson Imaging 27(2): 376-390 (2008)
- [5] Kay and Henkelman, Magn Reson Med 22(2): 414-424 (1991)
- [6] Fram et al., Magn Reson Imaging 5(3): 201-208 (1987)
- [7] Deoni et al., Magn Reson Med 53(1): 237-241 (2004)
- [8] Cheng and Wright, Magn Reson Med 55(3): 566-574 (2006)
- [9] mrsrl.stanford.edu/~jbarral/t1map.html

Figure 1: T₁ Mapping Sequences: a) Inversion Recovery, b) Look-Locker, c) Variable Flip Angle