

Potential of Relaxation-Weighted ^{23}Na -MRI for Brain Tumor Characterization

A. M. Nagel¹, M. Bock¹, C. Hartmann², L. Gerigk¹, J.-O. Neumann², M.-A. Weber², M. Bendszus², A. Radbruch², W. Wick², H.-P. Schlemmer¹, W. Semmler¹, and A. Biller²

¹German Cancer Research Center, Heidelberg, Germany, ²University Hospital Heidelberg, Germany

Introduction

In brain tumors, the average ^{23}Na -concentration is typically increased due to edema and sustained cell depolarization, a precursor of cell division [1]. It was already shown that relaxation-weighted ^{23}Na -MRI can be used to separate tumor compartments [2]. In this work it was evaluated whether relaxation-weighted ^{23}Na -MRI can provide additional information for tumor grading. Therefore, 16 patients suffering from different brain tumors (14 WHO grade I – IV and 2 metastases) were examined at 7 Tesla with ^{23}Na -MRI with different relaxation weightings.

Methods

^{23}Na images were acquired on a 7 T whole body system (Magnetom 7 T, Siemens Healthcare Solutions, Erlangen, Germany) using a double-resonant (^1H : 297.2 MHz; ^{23}Na : 78.6 MHz) quadrature birdcage coil (Rapid Biomed GmbH, Rimpar, Germany). Anatomical images, including T_1 weighted (T_{1w}) images before and upon contrast media administration, were acquired in the clinical routine workup using a 3 Tesla MR system (Magnetom Tim Trio, Siemens Healthcare, Erlangen, Germany).

$^{23}\text{NaT}_N$: Acquisition of the total sodium concentration with minimized relaxation-weighting ($\text{TE}/\text{TR} = 0.3/120$ ms; $\alpha = 90^\circ$, readout length: $T_{\text{RO}} = 10$ ms; nominal spatial resolution = (4 mm)³; acquisition time: $T_{\text{AQ}} = 10$ min).

$^{23}\text{NaT}_H$: To achieve a higher spatial resolution of (2.5 mm)³ while maintaining an acceptable image acquisition time, TR was shortened resulting in minor T_1 -weighting ($\text{TE}/\text{TR}/T_{\text{RO}} = 0.5/25/20$ ms; $\alpha = 55^\circ$; $T_{\text{AQ}} = 13$ min 20 s).

$^{23}\text{NaR}_R$: An inversion recovery (IR) preparation was applied to exploit T_1 -differences of ^{23}Na ions. Signal arising from ^{23}Na compartments with longitudinal relaxation times like in CSF ($T_1 = 64$ ms) was suppressed by using an inversion time of $\text{TI} = 41$ ms ($\text{TE}/\text{TR}/T_{\text{RO}} = 0.6/0.8/185/10$ ms; (5.5 mm)³; $T_{\text{AQ}} = 10$ min).

$^{23}\text{NaR}_{\text{SUB}}$: A fast ($T_{\text{AQ}} = 2$ min 30 s) ^{23}Na multi-echo sequence was applied to exploit differences in T_2^* -relaxation times ($\text{TR}/T_{\text{RO}} = 30/10$ ms; $\alpha = 68^\circ$; (5 mm)³). Images with echo times $\text{TE}_A = 0.6$ ms and $\text{TE}_B = 13$ ms were subtracted using a weighted difference. The weighting factor $e^{+(T_{E_B}-T_{E_A})/T_2^*(\text{CSF})}$ was chosen such that T_2^* -times like in CSF ($T_2^*(\text{CSF}) = 56$ ms) were fully suppressed. All ^{23}Na -MRI measurements used a density-adapted 3D radial projection pulse sequence [3].

To keep the total exam time short, not all sequences were applied for each individual patient ($^{23}\text{NaT}_N$, $^{23}\text{NaT}_H$, $^{23}\text{NaT}_{\text{IR}}$, and $^{23}\text{NaT}_{\text{SUB}}$ imaging were applied to 12, 6, 14, and 10 out 16 patients, respectively). Results from ^{23}Na imaging were correlated with the Mib-1 proliferation rate of tumor cells. For comparability, signal of tumor, edema and CSF ($^{23}\text{NaX}_Y$) normalized to healthy brain tissue ($^{23}\text{NaX}_{\text{healthy}}$) was calculated according to following equation: $^{23}\text{NaX}_Y [\%] = (^{23}\text{NaX}_Y - ^{23}\text{NaX}_{\text{healthy}}) / ^{23}\text{NaX}_{\text{healthy}}$

Results

In 15 out of 16 patients ^{23}NaT imaging revealed elevated total ^{23}Na signals of tumor tissue, whereas an increased relaxation-weighted ^{23}Na tumor signal was found in five out of 16 patients (Fig. 1a). Perifocal edema (present in six patients) exhibited hyperintense signals in ^{23}NaT imaging and hypointense signals in ^{23}NaR imaging (Fig. 1b). The pattern of signal changes in ^{23}NaT and ^{23}NaR was consistent for all WHO grade I – III brain tumors with elevated ^{23}NaT and decreased ^{23}NaR signals of tumor tissue. In all five glioblastomas the ^{23}NaR signal was higher than the maximal ^{23}NaR signal of WHO grade I – III tumors (Fig. 1a). Exemplarily images of a glioblastoma are shown in Fig. 2. Regression analysis revealed a positive correlation between normalized ^{23}NaR signal of tumors and Mib-1 proliferation rate ($R^2 = 0.74$, $p_{\text{corr}} < 0.00$) (Fig. 3a), whereas no correlation was found between ^{23}NaT signal and Mib-1 proliferation rate (Fig. 3b). Also, no correlations were found between normalized ^{23}Na signal and other histopathological markers such as mitotic activity, cell density and vascularization.

Discussion

An increased signal in both ^{23}NaT and ^{23}NaR imaging suggests tissue with an elevated concentration of sodium ions with short relaxation times. This signal increase might be due to an increase of the intracellular ^{23}Na concentration indicating a breakdown of the Na^+/K^+ -ATPase and / or the Na^+ co-transporter, e.g. in tumors with high proliferation rates as indicated by the positive correlation of ^{23}NaR signal and Mib-1 proliferation rate (Fig. 3a). Results from published animal studies also suggest an intracellular weighting of the $^{23}\text{NaR}_{\text{IR}}$ signal [4]. An elevated signal in ^{23}NaT imaging along with a decreased signal in ^{23}NaR imaging might be compatible with an increased extracellular volume fraction (e.g. due to edema, c.f. Fig. 1b). It should be noted, that a pathologically altered density of the intra- or extracellular matrix might evoke changes in ^{23}NaR signal intensities as well. Although this study is not suited for describing the physiological processes behind the ^{23}NaR signal, our results allowed for a correct separation of all gliomas into WHO grade I – III and WHO grade IV tumors. This indicates that ^{23}NaR imaging reveals valuable physiological tissue characteristics different from ^{23}NaT imaging and might provide significant information for a functional *in vivo* tissue characterization.

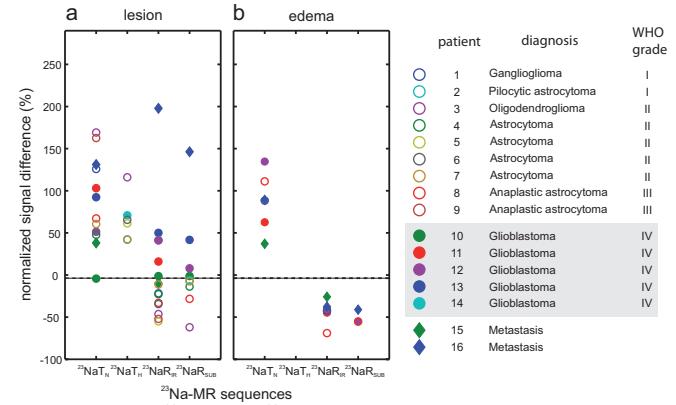


Fig. 1. Relative ^{23}NaT and ^{23}NaR signal intensities of the lesion (a) and perifocal edema (b). All glioblastomas exhibited ^{23}NaR signals higher than the WHO grade I – III tumors (a). Perifocal edema (b) showed hyperintense signals in ^{23}NaT and hypointense signals in ^{23}NaR imaging.

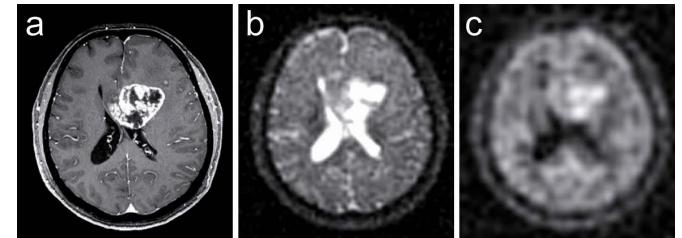


Fig. 2. Glioblastoma (WHO grade IV). (a) T_{1w} imaging revealed rim enhancement upon contrast media administration. (b) $^{23}\text{NaT}_H$ imaging demonstrated an increased signal of tumor tissue. (c) $^{23}\text{NaR}_{\text{IR}}$ imaging yielded elevated signals mainly of the central tumor portion.

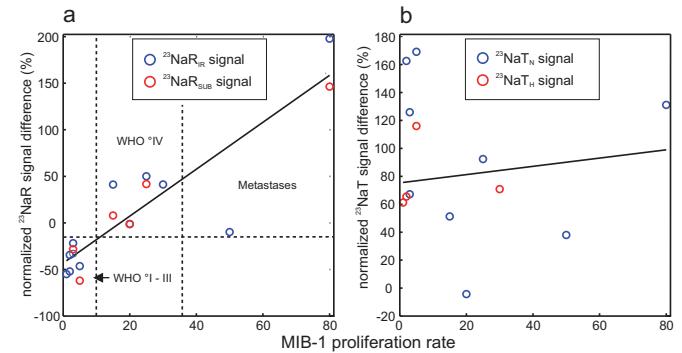


Fig. 3. Linear regression analysis demonstrated a positive association between ^{23}NaR signal and Mib-1 proliferation rate (a). There was no association between ^{23}NaT signal and Mib-1 proliferation rate (b).

References

- Boada FE, et al. Curr Top Dev Biol (2005) 70: p. 77.
- Nagel AM, et al. In Proc. ISMRM 2010, p. 727.
- Nagel AM, et al. Magn Reson Med (2009) 62: p. 1565.
- Kline RP, et al. Clin Cancer Res (2000) 6: p. 2146.

Acknowledgement:

This work was supported by the German Federal Ministry of Education and Research (project DOT-MOBI; 01IB08002).