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Introduction 
Spiral imaging has recently emerged as an alternative to echo-planar imaging for diffusion tensor imaging (DTI) because of its efficient k-space coverage and low 
sensitivity to flow artifacts (1–3). Multishot spiral trajectories are typically required to achieve a high resolution while maintaining a short readout duration to minimize 
off-resonance effects. However, shot-to-shot phase variations induced by motion in the presence of diffusion gradients lead to severe artifacts. Variable-density spiral 
trajectories can be used to generate a low-resolution phase estimate from the oversampled central k-space for each shot and correct for such artifacts (1–3). However, 
the readout duration is increased by up to 70% (4), resulting in a longer scan time and/or a higher sensitivity to off-resonance effects. Here, we propose a novel iterative 
phase cycling method that can correct for motion-induced phase errors in multishot spiral imaging without requiring any additional navigator, thus allowing a shorter 
scan time as compared to variable-density spiral acquisitions. 
 
Methods 
For simplicity, we consider a 2-shot spiral acquisition with an N×N matrix size, but extension 
to any number of shots is straightforward. For each shot m, the point spread function is first 
computed as: PSFm(x, y) = Σn DCF(n) exp{i2π[xkx(n, m) + yky(n, m)]}, where DCF is the 
density compensation function, (kx, ky) the spiral k-space trajectory, and (x, y) the spatial 
position on a (2N – 1)2 grid. 

The k-space data from each shot is then reconstructed separately (by zero-filling the 
missing data), resulting in aliased images due to undersampling. For each pixel (x0, y0), the 
relation between these images and the unaliased image to be reconstructed can be expressed 
as: a = E⋅u [1], where a is a 2×1 array containing the pixel values from the aliased images 
and u is a N2×1 array whose (x0, y0)th element contains the pixel value from the unaliased 
image (Fig. 1). In the absence of motion, E is a 2×N2 matrix whose rows contain the N×N 
subsets (N – x0 + 1:2N – x0, N – y0 + 1:2N – y0) of PSF1 and PSF2 (red squares), whereas in the 
presence of motion, the second row of E is multiplied by exp[–iφ(x0, y0)], where φ is the 
motion-induced phase error between the two shots. Thus, if φ is known, the unaliased image 
can be determined by solving Eq. [1] for each pixel. 

However, since φ is generally unknown, we use a phase cycling method, which consists in reconstructing a series of images using different φ values and choosing 
the image with the least amount of aliasing. Here, we assume that φ is spatially linear, i.e., φ(x, y) = φ0 + xgx + ygy, where φ0 is a global phase offset and (gx, gy) are linear 
phase gradients along (x, y), and cycle through different values of φ0, gx, and gy. This model is sufficient to correct for phase errors induced by rigid-body motion (5), 
but can easily be extended to correct for nonlinear phase errors induced by nonrigid motion. 

The image with the least amount of aliasing is chosen as the one with the lowest signal intensity in the background (i.e., outside the object). To avoid having to 
manually define the background region, the pixel values of each image are sorted in ascending order and the lowest 25% are summed to yield the background energy. 
As the energy does not need to be computed in the entire background, this threshold is not critical and can range from 5% to 50%. 

Because cycling through all possible values of φ requires a long computation time, we propose two 
strategies to drastically speed up the reconstruction. First, the phase cycling is performed only on low-
resolution images reconstructed from the central k-space, which remains effective as long as the resolution is 
sufficient to distinguish the background from the object. Once φ is known, the final image is reconstructed at 
full resolution. Second, the phase cycling is performed iteratively, starting with a large range and step size for 
φ0, gx, and gy. Once an estimate for φ is found, both the range and step size are reduced at the next iteration. 
The initial step size should be small enough to avoid local minima in the background energy. 

As a proof-of-concept, we studied a healthy volunteer on a 3 T GE scanner using a 2-shot spiral pulse 
sequence with TR/TE = 1580/30 ms, FOV = 24.3 cm, matrix size = 64×64, and slice thickness = 3.8 mm. 
Image reconstruction was performed in Matlab on a 3.4 GHz PC. 
 
Results and Discussion 
The uncorrected image (Fig. 2A, red square) as well as representative images reconstructed at full resolution 
using different gx and gy values have very different aliasing patterns. The sorted signal intensity (Fig. 2B) 
shows that one of these images has the lowest signal in the background (blue line in yellow area) as compared 
to the uncorrected image (red line) or any other image (black lines). A plot of the background energy as a 
function of gx and gy shows that the minimum energy is reached for (gx, gy) = (1,–2) (in units of k-space line 
shift) (Fig. 2C). These results demonstrate that the background energy minimization can identify the image 
with the least amount of aliasing (Fig. 2A, blue square). Similar results are obtained when cycling through φ0. 

By performing the phase cycling at a lower resolution of 16×16, the computation time per slice is 
reduced from 100 h to 1 h. In addition, by using five iterations of phase cycling with a variable step size rather 
than a single iteration, the computation time is further reduced to 13 s, which represents a total reduction by a 
factor 3×104. 

These initial results demonstrate that the proposed iterative phase cycling method can effectively and 
efficiently correct for motion-induced phase errors in multishot spiral imaging without requiring any 
additional navigator. Further work is currently underway to optimize this method and to demonstrate its 
advantages for multishot spiral DTI. 
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Fig. 1: Relation between the aliased and unaliased images, the PSFs, 
and the motion-induced phase error. 

Fig. 2: Images reconstructed using different gx and gy 
values (A). Sorted signal intensity of each image (B). 
Background energy as a function of gx and gy (C).
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