

Accurate T2 Mapping with Dual Echo-FSE: Effect of Phase Encoding Profile Orders

S. W. Anderson¹, O. Sakai¹, J. A. Soto¹, and H. Jara¹

¹Radiology, Boston University Medical Center, Boston, MA, United States

Purpose: Recently, it has been reported that T₂ qMRI with dual-echo fast spin echo (DE-FSE) can be inaccurate as much as 10% (1). Here we test the hypothesis that the reported T₂ discrepancy relative to the gold standard --32 echo CPMG pulse sequence (2)-- could be a DE-FSE echo train effect that is secondary to using different phase encoding profile orders for the first and the second echo. A T₂ qMRI algorithm, which corrects for this effect is developed and tested with the ACR MRI accreditation phantom and in the human brain.

Theory: The pixel values for echoes 1 and 2 of a DE-FSE train lead to the following modified T₂ mapping formula:

$$T_{2,(i,j,sl)}^{(A)} = \frac{TE2_{\text{eff}} - TE1_{\text{eff}}}{\ln \left(\frac{pv_{(i,j,sl)}^{\text{Acq_1}}}{pv_{(i,j,sl)}^{\text{Acq_2}}} \frac{\Delta V_{(i,j,sl)}^{\text{Acq_2}}}{\Delta V_{(i,j,sl)}^{\text{Acq_1}}} \right)} \quad \text{Eq. 1}$$

where $pv_{(i,j,sl)}^{\text{Acq_1,2}}$ are the experimental pixel values for echoes 1 and 2 and the voxel volumes are functions of the voxel response functions, a.k.a. voxel sensitivity functions (3):

$$\Delta V_{(i,j,sl)}^{\text{Acq_1,2}} = \iiint_{\substack{\text{Infinite} \\ \text{space}}} \text{VSF}^{(\text{Acq_1,2})} (\bar{X}_{(i,j,sl)} - \bar{x}) d^3 x \quad \text{Eq. 2}$$

These integrals depend on the phase encoding profile order and also on T₂. If different phase encoding profile orders are used for echoes 1 and 2, as is usually the case for obtaining shortest TE1_{eff} and long TE2_{eff}, then a correction to the standard T₂ mapping equation results (Eq. 1).

Experimental Methods: The ACR MRI accreditation phantom and a research subject were scanned at 1.5T using a dual echo FSE pulse sequence implemented with centric and linear profile orders for echoes 1 and 2 (see Fig. 1) respectively and the results were compared to those of references (1) and (2) for the ACR phantom and the human brain respectively. The ACR phantom contains 10mM and 20mM NiCl₂ solutions with reported T₂ values of 135ms and 70ms respectively.

Results: The centric and linear phase encoding profile orders (Fig. 1 top) lead to measurably different voxel sensitivity functions (Fig. 1 bottom). T₂ maps with and without the profile order correction are very similar in appearance but are quantitatively different (difference T₂ map: bottom image in Fig. 2): T₂s for WM were approximately 90ms without correction and 80ms with the correction (Fig. 2, top and middle, respectively). Similarly, for gray matter the T₂s decreased from 110ms to 100ms when the profile order correction was applied. Likewise, for the ACR phantom T₂ values (Fig. 3) 69±4ms and 134±6ms are in excellent agreement with those reported (1) with the CPMG-32 echoes gold standard pulse sequence. The values without correction were 74±4ms and 154±8ms, again in excellent agreement with the ones reported (1) for DE-FSE.

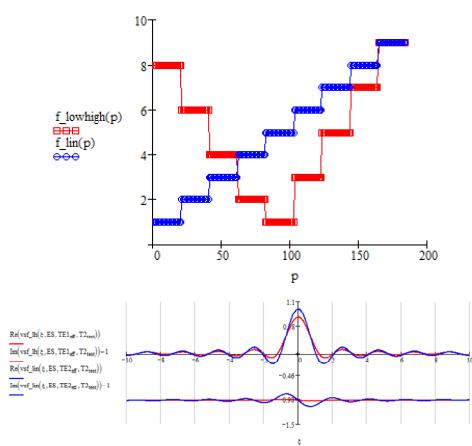


Figure 1

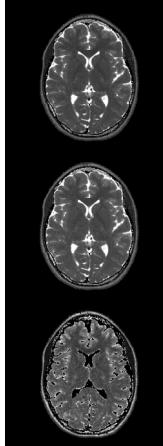


Figure 2

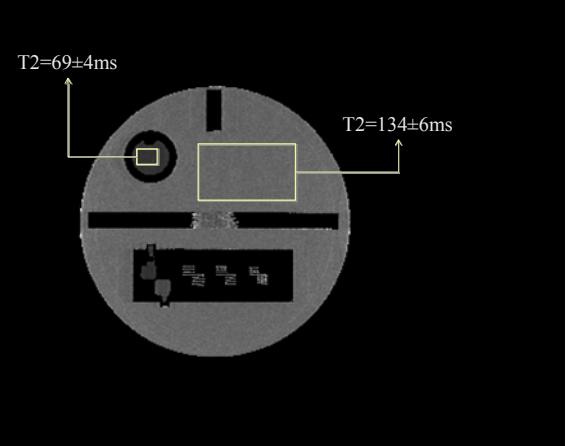


Figure 3

Conclusion: Accuracy of T₂ qMRI with the DE-FSE pulse sequence can be improved by correcting for profile order effects. This work could have implications for large scale studies that use DE-FSE instead of CPMG-32 echoes pulse sequences due to time and anatomic coverage constraints.

References

1. Leppert I, Almli C, McKinstry R, Mulkern R, Pierpaoli C, Rivkin M, Pike G. T2 relaxometry of normal pediatric brain development. *Journal of Magnetic Resonance Imaging* 2009;29(2):258-267.
2. Whittall KP, MacKay AL, Li DK. Are mono-exponential fits to a few echoes sufficient to determine T2 relaxation for in vivo human brain? *Magn Reson Med* 1999;41(6):1255-1257.
3. Parker DL, Du YP, Davis WL. The voxel sensitivity function in Fourier transform imaging: applications to magnetic resonance angiography. *Magn Reson Med* 1995;33(2):156-162.