Spatially variable Rician noise in DTI
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Introduction

During acquisition, MR images can appear to be corrupted by various artefacts due to noise. This problem becomes especially critical at low signal-to-noise ratios
(SNR). In general, in modern fast imaging techniques using multiple-coils, local inhomogeneities of the magnetic field, bulk body motions, etc, give rise to the
spatially-variable noise fields across an image [1]. Conventional noise correction schemes applied in diffusion tensor imaging (DTI) do not account for the spatial
variability of the noise. Following the idea of Ref. [1], in this work we have developed a noise correction scheme which takes account of the spatial inhomogeneity
of the noise, that is, the noise level is individually evaluated for each voxel. However, the procedure in Ref. [1] is valid only for high SNR under the assumption of
Gaussian noise. In contrast, we used a Rician correction to the robust Gaussian estimator based on the median absolute deviation which is valid irrespective of the
SNR level. The developed algorithm has been examined using numerical simulations with known spatial noise distributions and in vivo DTI experiments.

Theory and Methods

A standard deviation of the Gaussian noise distribution, g, can be evaluated in each voxel using the MAD estimator: O G = K -MAD , where coefficient K

= 1.4826 [2]. For high SNR, the Gaussian and Rician noise estimations tend to coincide. However, in the voxels with low SNR, the initial estimation based on the
Gaussian assumption has to be corrected for Rician noise. We perform a corresponding correction with the help of an analytical expression proposed in Ref. [3] for
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the Rician SD, o, = 0'%9), where function (@) is defined as g(6)= 2402 _Zexp(_ 9;]{[2 +62][0[942J+ 9211[9;)} Here, Io\(*) are

zeroth/first order modified Bessel functions, respectively. The correction function ((6#) can be determined from a transcendent equation:

<S >2 ) where <S$> is an averaged signal for the given voxel and F(SNR) is a function depending on the SNR
3 )
G

@ =F(SNR),F(SNR)= [c(0)1+

defined as <S>/ og. The image of the MR signal shown in Figure 1a was simulated numerically in such way that original signal was equal to 100 untis for a whole
image but the SD was different in three different sub-regions. In the left upper quadrant, the noise was assumed to be Gaussian with SD equal to 5 units; in the left
lower quadrant the noise assumed to be the Rician with SD equal to 20 units. The right half of image is distorted by Rician noise with SD equal to 45 units. /n vivo
diffusion brain experiments were carried out with a whole-body 3T Siemens MAGNETOM Trio scanner (Siemens Medical Systems, Erlangen, Germany).
Diffusion weighted images were acquired for 15 diffusion weights in a range between 0 and 7000 s mm~ and 6 non-collinear directions of the encoding diffusion
gradients.

Results and Discussion

We evaluated SD for the simulated image shown in Figure Osimm>  1000s/mm?> 3000s/mm> 7000s/mm>
la using the developed approach and two classical methods
for comparison. One of the latter is based on the background
region estimation (BE) [1]. Another classical method utilizes
the Brummer histogram algorithm (BH) [1]. The
corresponding histograms are shown in Figure 1b for
Gaussian noise, Rician noise, and the BH and BE methods.
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weightings. Two voxels in which the signal
attenuates at the different rates were selected
Figure 1 fo.r analysis: thf: lowe_r red arrow is associated
with voxel 1 in which the signal attenuates
relatively slowly with increasing diffusion
weightings and, therefore, the residual SNR
remains high; the upper red arrow points to
voxel 2 in which the signal attenuates fast, and the remaining SNR at high diffusion
weightings becomes low. We applied the Gaussian and Rician noise correction schemes
to signal attenuations in these voxels. Classical BE and BH algorithms were also used for
a comparison. Corrected data were used thereafter to reconstruct diffusion tensors
associated with selected voxels. Mono- and bi-exponential diffusion tensors were fitted
using a constrained non-linear least squares method [4]. Mono-exponential fits were
restricted to the range of the diffusion weightings below 1000 s mm; bi-exponential fits
were performed in the full range of the acquired data. The evaluated data are presented in
ellipsoidal form (main axes of the ellipsoids are related to the eigenvalues of the tensors)
in Figure 3A (mono-exponential), 3B (“fast” tensor) and 3C (“slow” tensor). The
differences observed for different noise correction methods were especially strong in the
case of the “slow” tensor. These results will be discussed in the context of the residual
noise level.

Conclusion

The proposed spatially-variable Rician noise correction algorithm was shown to be beneficial for the post-processing of DTI experiments due to its ability to treat
noise at low SNR more precisely than using the Gaussian approach or the classical algorithms.
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