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Introduction: Phase images of the human brain acquired using gradient echo techniques show excellent contrast resulting from differences in magnetic susceptibility
across tissues [1]. Recently, it has been shown that the magnetic susceptibility of white matter (WM) has a measurable anisotropy [2-3] and Liu et al. [3] introduced a
method for quantifying this anisotropy by combining phase data measured with the sample (an ex vivo mouse brain) positioned at 19 different orientations to the main
magnetic field. In this method, field values derived from the phase data were used in a 6 parameter fit to populate the elements of a symmetric 3x3 susceptibility tensor
matrix at each voxel. Here, we present a method for reducing the number of parameters in the fitting process to two, based on the assumption of cylindrical symmetry
and a priori knowledge of the orientation of the principal axis of the susceptibility tensor. Using simulations, we demonstrate the improved conditioning that a 2-
parameter fit offers relative to a 6-parameter fit for mapping anisotropic magnetic susceptibility. The development of this approach is motivated by the observations
that nerve fibres in WM show local cylindrical symmetry and their orientations can be established using diffusion tensor imaging [4], making the proposed approach a
viable one for measuring anisotropic susceptibility in the brain. The method could open up prospects for in-vivo measurements of anisotropic susceptibility, where the
range of head orientations at which phase maps can be measured is limited by restrictions on subjects’ head movements and the need to limit scanning times.

Theory: Figure 1 shows the geometry of the problem. In the scanner’s frame of reference, the orientation of the principal axis of the Cylindrically Symmetric
Susceptibility Tensor (CSST) is defined by the angles 0. and @, and the principal components of the susceptibility tensor are written as x Xn 0 0

and y». In the frame of reference defined by the principal axes of the susceptibility tensor, the magnetisation is given by \ = ZH > where X=| 0 Z» O

To first order in y, the magnetisation in this frame is then given by M = H [_ s (sin 0, (Cos ¢,% +sin ¢Ty))+ 71, €OS gri], where
H,=B, / U, - Transforming back to the laboratory frame and using the substitutions ys.. = (y11+x22)/2, and ypyy = (x11-x22)/2, the
+ X by €020, ), M, = HO(;(Dl./f sin 26, cos¢T)a
M, =H, (XDW sin 26, sing, ) We can now calculate the z-component, B., of the field perturbation produced by the induced
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components of the magnetization are found to be Jf = Ho(l
z

magnetisation. In doing this, the x and y-components of the magnetization cannot be ignored as they contribute to B.. By transforming the
problem to the Fourier domain and using a spherical harmonic expansion, we find that B, due to the CSST is given by Eq.[1]. Here 6, and

@, are the spherical polar coordinates of k in the frame defined with B, parallel to z (Fig. 1). Equation [1] can be used to calculate the Fie.1 Schematic of CSST.

field offset due to a CSST based on knowledge of: the direction of the principal axis and parameters B B
describing the sum and difference of the two susceptibility values. It can also be used in solving the inverse B, (k)/ B, =FT (st + Xy ©08 26, )X (COS 6.~/ 3)
problem in which the components of the CSST are calculated from measurements of B. +FT (ZD g Sin 26, cos ¢T) (sin 26, cos ¢, )/ 2

Methods: To validate the theory, the field offset due to a simulated CSST was calculated using both Eq.[1] | + FT(;(D,,, sin 26, sin ¢T (sin 26, sin @, /2 Eq.1

and the previously described, 6 parameter (6P) forward calculation [3].A numerical phantom consisting of
two ellipsoids containing materials characterised by different CSST’s was used. One ellipsoid (EA) EA EB
contained material with a principal axis oriented along z, while the material of the second ellipsoid (EB) had
a principal axis oriented along y. We set y;; =2 and y2, = | in both ellipsoids and B, was oriented along z.
Fig.2a shows the orientations of the CSST’s for each ellipsoid, and Fig.2b shows the simulated field from the

6P forward calculation. The field calculated for the same arrangement using the 2-parameter (2P) forward
calculation (Eq.[1]) is shown in Fig. 2c. The difference in the two simulations, Fig.2b-Fig.2¢c, was negligible.
The next stage was to invert the validated 2P forward calculation to reconstruct a susceptibility map, and to
compare with the results of the 6P inversion [3]. The ill-posed inversion can be conditioned by combining
data sampled with different object orientations relative to By. To test the level of conditioning required by
the 2P and 6P methods, three different orientation sampling strategies were considered: 1-20 orientations
restricted to a range of motion (ROM) of +20° from a neutral position (this is the estimated maximum
ROM for a human subject inside an MRI scanner), 1-20 orientations with an ROM of +40°, and 1-20
orientations with an ROM of £60°. One sampling strategy (20 orientations with an ROM of +40°) is
depicted in Fig.3. In each case, the sampling axes were approximately evenly spread over the surface
defined by the ROM. The inversion was carried out using a conjugate gradient method [5], based on
either the 2P or 6P forward calculations and limited to 50 iterations. For each sampling strategy yi, and y»,
maps were calculated and an error % was formed relative to the actual values.

Fig.2 Simulated fields due to two CSST’s (a), using
the 6P method (b) and the 2P method (c).

m

Fig.4 y,, maps for: (a) 6P,£20°,N,=3; (b) 6P+
60°,N,=6 ; (c) 2P£20° ,N,=3; )(d) 2P+20°,N,=5.

Fig.3 Sa;nﬁling strategy
for ROM =+40°.

Results and Discussion: Table 1 details the minimum number of orientations, Ny, that the 2P and 6P
methods needed to reconstruct y;;& y2, susceptibility maps with a mean error of less than 10% and 5% for the
different ROM values. Representative slices of the reconstructed y;; maps are shown in Fig.4 for: the 6P method

with ROM/N,= £20°/3 (Fig.4a) & £60°/6 (Fig.4b) and the 2P method with ROM/ N,= +20°/3 (Fig.4c) & +20°/5 i N, 2
(Fig.4d). These show that the 2P method can produce good quality maps of y;; & y2; with a lower number of Regime | ROM (crror £10%) (error <5%)
orientations and a smaller range of motion than required by the 6P method. When the number of samples or ROM is +£20° 6 -
too small the 6P method underestimates the value of y;; in compartment EB where the principal axis is 6P +40° 7 9
perpendicular to By In These results indicate that high quality CSST maps can be created using 5 sampling +60° 6 6
orientations spread over a £20° ROM. This is an important finding as it suggests that given a priori knowledge of izo: 3 3
the spatial variation of the CSST orientation (e.g. from DTI data), maps of anisotropic susceptibility could be P izgo g i

produced in—vivo where the number and range of head orientations that can be measured is limited. In conclusion,
we have presented and validated a 2-parameter method for calculating the field offsets produced by a distribution of
cylindrically symmetric anisotropic susceptibility and have shown that this method allows mapping of susceptibility
anisotropy using a relatively small number of measurements. This opens up the possibility of exploiting anisotropic
susceptibility mapping in clinical studies.
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Table.1 Results for 2P vs 6P inversion.

Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 4515



