

Simulation of the Filtering Effect of the FLASH Readout on Saturation Recovery T_1 Evaluation

M. C. Berger¹, W. Semmler¹, and M. Bock¹

¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

INTRODUCTION

The measurement of T_1 relaxation times can be time-consuming with standard imaging techniques such as inversion recovery spin echo that require measurement times of minutes to hours to acquire a series of images with different T_1 contrasts. Fast imaging sequences that encode more than one k-space line per magnetization preparation (MP) step, e.g. saturation recovery turboFLASH (SRTFL) [1], can be used to shorten the acquisition time. Unfortunately, the prolonged SRTFL readout disturbs the MP by additional radio frequency (RF) pulses. While the first measured k-space line after the preparation is undisturbed, later lines will increasingly deviate from the intended MP state. Thus, the imaging process acts as a filter on the measured k-space data in phase encoding direction [1,2]. The filter effect can be mitigated by a segmented, centric-reordered k-space acquisition scheme [3]. In this work the influence of the segmentation parameters on the filter and the T_1 measurement accuracy is assessed in numerical simulations.

MATERIAL & METHODS

The evolution of the longitudinal magnetization in a SRTFL experiment was simulated, images were calculated at different saturation recovery delays TS , and T_1 values were determined from the images using a non-linear fitting procedure. All calculations were done in MATLAB 7.10 (The MathWorks Inc., Natick, MA). A virtual phantom (size: 256×208 pixel, Fig. 1) was created, which contained circular vials with 102 different T_1 values between 0.06 and 20000 ms. The vials were surrounded by a material with $T_1 = 375$ ms. Regions of Interest (ROIs) were created from the vial areas by an erosion filter, yielding ROIs with a diameter of 7 px.

The phantom was segmented by its T_1 values, since the FLASH steady-state depends on T_1 and is therefore spatially varying. For every T_1 the initial ($k = 1$) longitudinal magnetization at time TS after saturation was calculated assuming perfect saturation:

$$M_z^1(x, y) = M_{z,0} \left(1 - e^{-\frac{TS}{T_1(x, y)}} \right) \quad (1)$$

All subsequent ($k > 1$) magnetization distributions in this measurement segment were calculated iteratively by element-wise application of functions and matrix multiplications assuming a spoiled gradient echo readout with repetition time TR :

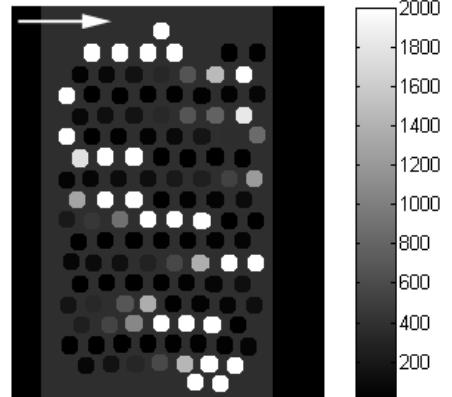
$$M_z^{k+1}(x, y) = M_z^k(x, y) \cos(\alpha) e^{-\frac{TR}{T_1(x, y)}} + M_{z,0} \left(1 - e^{-\frac{TR}{T_1(x, y)}} \right) \quad (2)$$

The corresponding k-space filter strength for the k^{th} PE line in this segment was given as the ratio of the k^{th} total magnetization and the initial total magnetization that was considered to have ideal contrast:

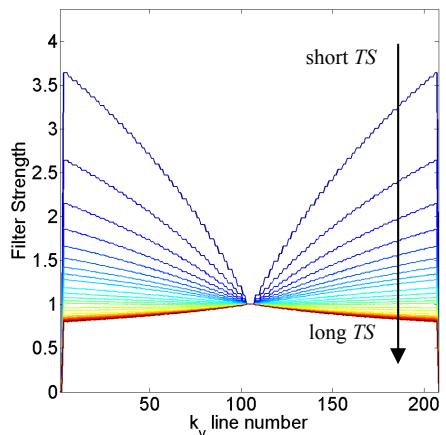
$$F_k = \sum_{x,y} M_z^k(x, y) / \sum_{x,y} M_z^1(x, y) \quad (3)$$

This filter was then applied to the k-space representation of the vial with the corresponding T_1 . Finally, all filtered k-space representations were added to mimic the total k-space of the virtual phantom in a SRTFL experiment.

The SRTFL was simulated with $TR = 2.9$ ms, flip angle $\alpha = 8^\circ$, $\{1, 3, 5, 13, 23\}$ segments, 256/208 frequency/phase encoded data points. The 27 simulated TS values ranged from 20 to 5000 ms. From the series of images with different TS , T_1 values were calculated using a non-linear least squares fitting procedure (Levenberg-Marquardt). The fitted T_1 values were plotted against the theoretical values for different segmentation schemes (Fig. 3).


RESULTS AND DISCUSSION

The comparison of the fitted with the theoretical T_1 values in Fig. 3 shows that the precision of the segmented SRTFL T_1 measurement increases with increasing segmentation. As is shown in Fig. 2, an unfiltered T_1 -set is achieved for one T_1 -dependent TS only, when the MP state (Eq. 1) and the FLASH steady-state coincide. In general, k-space is high/low-pass filtered along the PE direction for short/long TS times and signal intensities in ROIs get perturbed.


The filter effect can be minimized by increasing the segmentation of k-space; however, this prolongs the total measurement time by the same factor: With 5 segments and 208 PE lines (20% k-space coverage per segment), $T_1 \in [40; 4800]$ ms can be determined within a maximum error level of 8% (Fig. 3) and an acquisition time (TA) of 1:30 min. With 13 segments (7.7% coverage per segment), T_1 is measurable with an error level below 3% (data not shown here) and with a lower limit of 20 ms. TA is then approximately increased by a factor 20/7.7, yielding 3:58 min. Thus, T_1 precision can be traded dynamically against temporal resolution, so that this technique is suitable for both breath-held acquisitions with lower T_1 precision and minute-long measurements with high T_1 accuracy.

REFERENCES

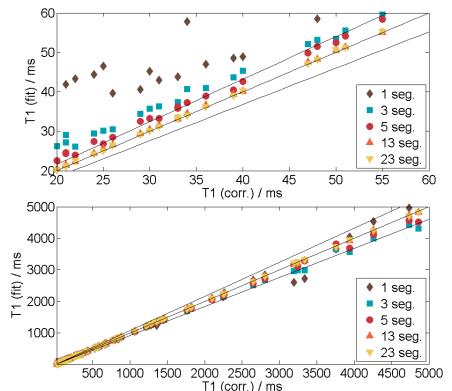

- [1] Blüml S et al. Magn Reson Med 30(3): 289–295 (1993)
- [2] Chien D et al. J Magn Reson Imag 1(1): 63–70 (1991)
- [3] Bock M et al. MAGMA 21(5): 363–368 (2008)

Fig. 1 Virtual phantom with T_1 -values ranging from 0.06 ms to 20 s (10 – 2000 ms shown). Arrow: phase encoding (PE) direction

Fig. 2 One line of the average image filter along the phase-encode direction. From blue to red: TS increases from 20 ms to 5000 ms. Central line is always $\equiv 1$ (i.e. no filtering) since full MP contrast is achieved there. Acquisition is simulated with 5 segments. K-space center line is line 104.

Fig. 3 Comparison of fitted and correct T_1 values for different number of segments. Additional lines: $\pm 8\%$ borders. Top: Same data as bottom, but lower T_1 range is magnified.