Practical Considerations for the Design of Parallel Transmission Pulses at ultra high field
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Introduction: Parallel transmission was recently proposed as a promising means to accelerate multidimensional selective excitation using multiple coils driven with
independent waveforms. Accelerated selective excitation can also reduce specific absorption rate (SAR) and shorten multidimensional RF pulses in such applications as
compensation for B, and By inhomogeneities. Parallel transmission could be a potential solution for mitigating or solving RF and SAR problems at the ultra high field
(e.g, 7T). Many methods have been proposed for designing the RF pulses for multiple coils [1-5]. One of the popular methods was proposed by Grissom et. al. [1],
which formulated RF pulse design as a quadratic optimization problem in the spatial domain and allowed the use of arbitrary k-space trajectories and easy incorporation
of By inhomogeneity correction. We applied this method for 7T applications and found that excitation artifacts were generated due to finite gradient raster time. This
fact is generally neglected during the implementation of Grissom’s method. In this study, two novel methods were proposed to compensate the aforementioned
excitation errors and verified using Bloch simulations and phantom experiments on 7T scanner.

Methods: Under the regime of small tip angle, the transverse magnetization produced by any RF pulse
waveforms, b(t), from R transmit coils can be approximated by the Fourier integral of an excitation k-space
trajectory using the coil’s complex B; map, s(x),
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where y is the gyromagnetic ratio, my is the equilibrium magnetization magnitude, T is the pulse length, and
k(t) is defined as the time-reversed integration of the gradient waveforms. As shown in Ref [1], by directly
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Fig. 1 Comparisons of different RF pulse design
methods. Top row, Bloch simulation; Bottom row,
phantom experiments.

For Siemens 7T scanner, the gradient raster time, At, is 10 us, which is used as the time step for designing
both the spiral trajectory and RF pulses for parallel transmission. However, as shown in the following
simulation and experimental results, this direct discretization is not accurate enough due to finite gradient
raster time step. To improve to the accuracy, we assumed that the gradient during each At period is constant,
which leads to a linear k(t) as k(t-t;)=k(t)+{k(ti+1)-k(t;)} X(t-t;)/At. Since the minimal time step for the RF
waveform is 1 us, the RF waveforms within At can be specified either as constant or a linear function using
more RF sampling data points. The correct a; can then be obtained by the integration for each At period
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instead of direct discretization as in Ref.1. For method I, assuming a constant b(t) within each At period, The
(i,j)-th element will be
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For method II, b(t) is assumed to be linear function within each small At, that is b(t-t;)=b(t;)+{b(tis)-
b(t)}*(t-t;)/At , the (i,j)-th element will be
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where the correction coefficients ¢;is given as,

[ iX; e {k(tjﬂ) - k(tj )} ©

Results and Discussion: All experiments were performed on 7T Siemens scanner equipped with the multi-
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Fig. 2 Excitation profiles along the red dotted line
in Fig.1 for different RF pulse design methods

Tx capabilities. An 8-channel Tx/Rx coil was used and the RF waveforms for each Tx channel can be

independently driven. The B, map (64%64) for each transmit channel was obtained sequentially with a 2D GRE sequence via varying the excitation voltages from 12.5V
to 150V in total 12 steps. The interleaves spiral trajectories were numerical designed with a maximal gradient amplitude, 24 mT/m, slew rate of 80 mT/m/ms, FOV =
200 mm, and matrix size = 32. The acceleration factor for the RF excitation was from 2 to 4, which depends on the number of spiral/EPI interleaves. The design flip
angle was 5° and total RF duration was 5.4ms.

Fig.1 shows the comparison of excitation patterns using different RF pulse design methods with acceleration factor of 4. Top row of Fig.1 shows the Bloch
simulation results and bottom row of Fig.1 shows the experimental results. It is obvious that the both Bloch simulation and experiments indicate the excitation pattern
designed using method described in Ref.1 was tilted slightly to the left and achieved higher residue excitation errors at the background. On the other hand, both method
I in Eq.4 and method 1II in Eq.5, proposed in this work corrected these excitation errors in the simulations. Fig.2 showed the 1D simulated excitation profiles taken
along the red dotted line in Fig.1. The excitation profile using previous method as in Eq.3, showed a slightly shifted excitation profile. To quantify the excitation errors,
the mean square errors for the experimental excitation patterns in relative to the designed pattern were determined to be 0.069, 0.0015, and 0.0010 for method in Ref
[1],_method I and method II, respectively. The methods described in this study reduced excitation error by more than six times in terms of mean square errors.

Although the tilting was corrected and background errors were smaller using the proposed methods in experiments as shown in the second row of Fig.1, the mean
square error reduction factor are only about two, which is much smaller than the simulation results, especial at the background region. We speculated that the excitation
errors in the experiments caused by many other factors, such as eddy currents and delays between the RF pulses and gradients. The excitations with other acceleration
factors for EP trajectory were also demonstrated (results not shown) and the proposed methods provided better results for both trajectories. When the EP trajectory was
used, the excitation without using the correction terms showed obvious ghosting instead of tilting as shown in Fig.1. On the other hand, the experimental results with the
use of EP trajectory also showed larger background errors than the simulated results.

Conclusions and Future works: We have proposed two novel methods to correct the excitation artifacts due to finite gradient raster time that was widely neglected.
Significant improvement can be observed with the implementation of the proposed methods. However, other factors, such as eddy currents, distorted gradient trajectory
are also potential issues to excitation errors and should be carefully compensated during the parallel transmission experiments. Future work will focus on combining the
methods in Ref [6] to compensate eddy current induced artifacts.
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