

Fast 3D B_1 mapping with single-shot EPI

J. Moore^{1,2}, M. Jankiewicz^{1,3}, A. W. Anderson^{1,4}, and J. C. Gore^{1,4}

¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States, ²Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States, ³Department of Radiology and Radiological Sciences, Vanderbilt University, ⁴Department of Biomedical Engineering, Vanderbilt University

Introduction

Accurate field mapping is integral to the success of ultra-high field MRI. Knowledge of the spatial variations in transmitted RF fields (B_1^+) allows for the calibration of RF pulse amplitude, guides the design of adiabatic and other B_1^+ -insensitive pulses, and enables real-time pulse designs that capitalize on parallel transmission technologies (e.g., spectral-spatial excitations and RF shimming). Maps of the receive field (B_1^-) permit post-processing image intensity corrections and facilitate the design of RF coils for high-field applications. Static field variations (ΔB_0) maps are used in an array of applications from RF pulse calibration to post-processing image distortion correction. One of the challenges currently facing high-field MRI research is the fast acquisition and calculation of all such field map data without sacrificing accuracy of the measurements. Here, we demonstrate a workflow for measuring/calculating all relevant fields at $3 \times 3 \times 5$ mm resolution through the entire human brain in less than three minutes at 7 T. This approach differs from previously reported fast mapping protocols in that a single-shot EPI read-out is employed such that a multi flip-angle fitting technique can be utilized to calculate the RF fields without the time penalty associated with long TR, non EPI sequences.

Methods

In our field mapping protocol, we first measure ΔB_0 in the brain of a healthy human subject using a 3D GRE scan ($3 \times 3 \times 5$ mm resolution, 33 axial slices, $T_R = 4.0$ ms, flip angle = 10°) with a double echo acquisition ($T_{E,1} = 1.6$ ms, $T_{E,2} = 2.6$ ms) and 2nd order static shimming. Total scan time is 16 s. ΔB_0 is calculated from the phase difference of the two acquisitions and the known ΔT_E of 1 ms. RF field mapping is based upon a voxel-by-voxel, least-squares fitting of signal intensity from a multi flip-angle series of GRE images—a method previously adopted to generate B_1^+ maps for sparse spokes RF pulse designs [1,2]. In addition to accuracy, this technique has the benefit of returning an estimate of the collective quantity ρB_1^- as one of the fitting parameters. The main disadvantage of this fitting-based approach to measuring B_1^+ and ρB_1^- is the lengthy scan duration required to accommodate ≥ 10 dynamics with varying flip angles while keeping T_R long enough that the resulting signal is independent of T_1 relaxation. To overcome this limitation, we use a single-shot EPI read-out. Moreover, due to the long T_R (5 s) of the sequence, this ultra-fast read-out allows a multi-slice scan to be performed with no slice gap such that the entire brain is covered (33 axial slices, 5 mm thickness) without increasing total scan duration. This RF map scan used the same geometry as the ΔB_0 data along with flip angles of 10° to 210° in 20° steps for a total of 11 dynamics. Total scan time is 65 s. Given the B_0 variations in the brain at 7 T, dramatic distortions result from the use of single-shot EPI; however, the ΔB_0 map acquired with identical static field shimming can readily be used to make the necessary EPI distortion corrections [3]. This post processing step and the least-squares fitting are performed in Matlab (The MathWorks, Natick, MA) and take approximately 60 s for a total scan + processing time of ~ 2.5 minutes. For comparison/validation, we perform RF mapping utilizing multi-shot EPI (EPI factor = 3, scan time = 19.5 min.) during the same scan session.

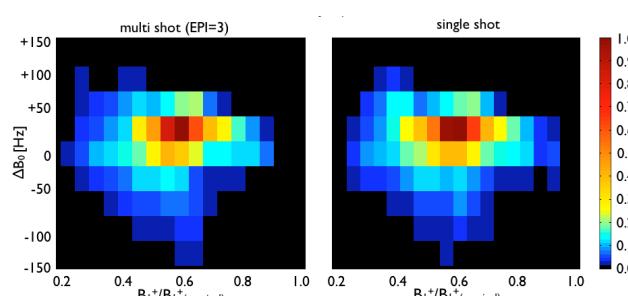


Fig. 2: Relative number of voxels of the 3D B_1^- - ΔB_0 in-vivo data, acquired with multi-shot (left) and single-shot (right) EPI read-out.

Results and Conclusions

A sample of axial slices from all field maps is presented in Fig. 1. Values of ΔB_0 largely fall in the ± 150 Hz range with the largest deviations occurring near the frontal sinuses and the ear canals. Single-shot EPI B_1^+ maps are qualitatively similar to those acquired with the low EPI factor; however, small-scale variations are apparent in regions of maximum ΔB_0 and reflect imperfections in the EPI distortion correction. Measurements of ρB_1^- differ more noticeably between the single- and multi-shot scans, but, again, variations occur mostly on a small spatial scale. The highly localized nature of these differences suggests that single-shot RF field maps may benefit from the application of a 2D low-pass filter. Overall, the estimated geometry of both B_1^+ and ρB_1^- maps is preserved under single-shot acceleration despite a ~ 20 -fold reduction in scan time. This fact is reflected in the 2D voxel histograms of Fig. 2 which show the distributions of ΔB_0 and B_1^+ throughout the brain to be quite similar. The combination of techniques presented here thus appears to be a practical tool given the existing demands for fast and accurate field mapping.

Acknowledgments: This work was supported by (BRP) NIH grant RO1EB000461

References: [1] K. Setsompop et al., JMR 195: 76 (2008); [2] M. Jankiewicz, et al., JMR 203:294 (2010); [3] Jezzard, P. et al.: MRM 34: 65 (1995).

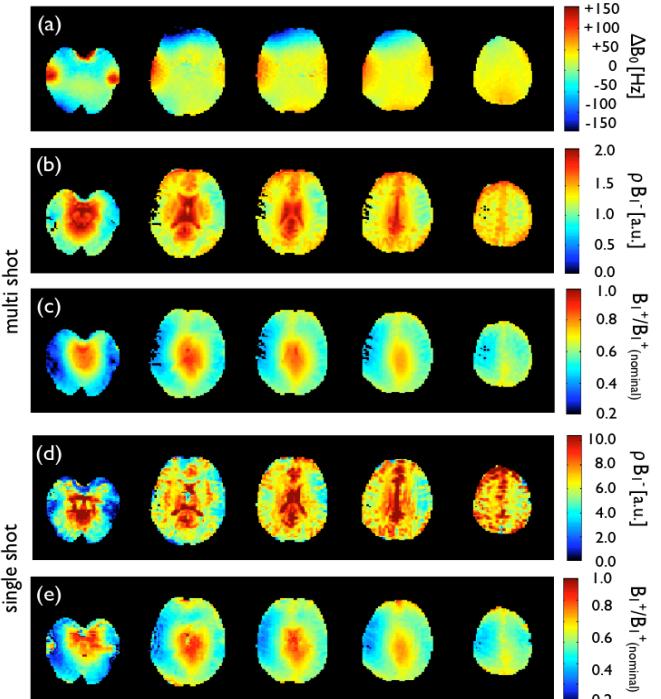


Fig. 1: In-vivo data (5 axial slices): ΔB_0 maps used in EPI distortion correction (a); ρB_1^- maps (b) and (d) (multi-shot) and B_1^+ maps (c) and (e) (single-shot) obtained using fitting method of data acquired with multi-shot and single-shot EPI read-out, correspondingly. High-frequency spatial noise apparent in (d) and (e) is due to single-shot EPI artifacts and low SNR.

is the length of the sequence required to accommodate ≥ 10 dynamics with a single-shot EPI read-out. Moreover, due to the long T_R (5 s) of the sequence, this ultra-fast read-out allows a multi-slice scan to be performed with no slice gap such that the entire brain is covered (33 axial slices, 5 mm thickness) without increasing total scan duration. This RF map scan used the same geometry as the ΔB_0 data along with flip angles of 10° to 210° in 20° steps for a total of 11 dynamics. Total scan time is 65 s. Given the B_0 variations in the brain at 7 T, dramatic distortions result from the use of single-shot EPI; however, the ΔB_0 map acquired with identical static field shimming can readily be used to make the necessary EPI distortion corrections [3]. This post processing step and the least-squares fitting are performed in Matlab (The MathWorks, Natick, MA) and take approximately 60 s for a total scan + processing time of ~ 2.5 minutes. For comparison/validation, we perform RF mapping utilizing multi-shot EPI (EPI factor = 3, scan time = 19.5 min.) during the same scan session.