## SIMULTANEOUS B<sub>1</sub> AND B<sub>0</sub> MAPPING USING DUAL ECHO ACTUAL FLIP ANGLE IMAGING (DE-AFI)

C. Lenz1, O. Bieri1, K. Scheffler1, and F. Santini1 <sup>1</sup>Radiological Physics, University of Basel Hospital, Basel, Switzerland

Introduction. Only recently, actual flip angle imaging (AFI) has been introduced as a fast and robust 3D method for mapping the B<sub>1</sub> transmit field by measuring the spatial variations of the effective flip angle (1). The AFI pulse sequence consists of a dual TR (repetition time) conventional spoiled gradient echo pulse sequence, where  $TR_2 >$ TR<sub>1</sub>. In this work, a second echo has been added to the standard AFI timing diagram, which enables additional B<sub>0</sub> mapping by reconstructing phase difference maps based on the phase images of the two acquired echoes. In vivo results of fast simultaneous B<sub>1</sub> and B<sub>0</sub> mapping using dual echo AFI (DE-AFI) are presented.

Methods. The timing diagram of the modified AFI sequence enabling both B<sub>1</sub> and B<sub>0</sub> mapping is illustrated in Figure 1. Assuming complete spoiling of the transverse magnetization and TR shorter than the longitudinal relaxation time, the flip angle α (and thereby the final B<sub>1</sub> maps) can be calculated according to the signals S<sub>1</sub> and S<sub>3</sub> with (1):

 $\alpha \approx \arccos\left(\frac{rn-1}{n-r}\right)$ , with  $r = \frac{S_3}{S_1}$  and  $n = \frac{TR_2}{TR_1}$ .

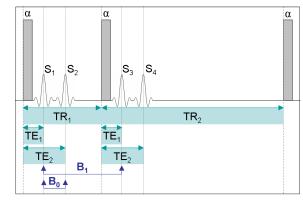



Fig.1: Schematic timing diagram of the applied pulse sequence.

In order to achieve complete spoiling of the transverse magnetization, the modified spoiling scheme proposed in (2) was implemented in the applied pulse sequence.  $B_0$  maps were reconstructed according to the phases and magnitudes of the signals  $S_1$  and  $S_2$  by using the four-quadrant arctangent function (3):  $\Delta \Phi = \arctan 2 \left[ \operatorname{Im} \left( Z_1 Z_2^* \right), \operatorname{Re} \left( Z_1 Z_2^* \right) \right], \text{ with } Z_1 = r_1 \exp \left( i \cdot \varphi_1 \right) \text{ and } Z_2 = r_2 \exp \left( i \cdot \varphi_2 \right),$ 

where  $\phi_{1,2}$  depict the phases and  $r_{1,2}$  the magnitudes of  $S_{1,2}$ . Experiments were performed on a 1.5T system on the brain of one healthy volunteer based on a 3D matrix of 64 x 64 x 40, 4 x 4 x 5 mm<sup>3</sup> resolution and non-selective excitation. Moreover, the following parameters were chosen: TR<sub>1</sub> = 20 ms,  $TR_2 = 100$  ms,  $TE_1 = 2.48$  ms,  $TE_2 = 7.24$  ms,  $\alpha = 45^\circ$ , partial Fourier 6/8 and radio-frequency spoiling phase increment = 129.3°. The total scan time for the combined B<sub>1</sub> and B<sub>0</sub> mapping pulse sequence was 131 seconds. In order to validate the proposed technique, two separate standard pulse sequences were acquired. For comparison of the  $B_1$  field maps, a triple  $\alpha$  scheme, as described in (4), was acquired with similar parameters than the ones indicated above. For comparison of the B<sub>0</sub> field maps on the other hand, a built-in scanner solution was used that as well acquires two gradient echo datasets. The  $\Delta TE$  of the built-in protocol was similar to the one given above ( $\Delta TE = 4.76$  ms).

Results & Discussion. Figure 2 presents the 3D B<sub>1</sub> and B<sub>0</sub> mapping in vivo results from one healthy subject. The resulting B<sub>1</sub> maps look smooth and yield values close to the reference flip angle (6 % deviation in maximum). The calculated deviations remain small in both brain tissue and the ventricular system (see profile). Furthermore, the B<sub>1</sub> maps correspond well with AFI results from literature (1,2) and show no significant discrepancy when comparing to the results acquired using the triple α scheme. Reconstruction of the B<sub>0</sub> maps based on averaging between S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, S<sub>4</sub> did not lead to an improvement of the maps. Hence, S<sub>4</sub> was no taken into account for neither the calculation of B<sub>0</sub> nor B<sub>1</sub> variations. Besides that, for the calculation of the B<sub>0</sub> maps from our data sets, no phase unwrapping was necessary due to the application of the four-quadrant arctangent function. Additionally, good correspondence between the resulting  $B_0$  maps and the  $B_0$  maps acquired using the built-in scanner protocol can be observed.

Conclusion. We present a new solution to simultaneous B<sub>1</sub> and B<sub>0</sub> mapping using a DE-AFI pulse sequence. The proposed technique has the advantages of offering whole brain coverage and a fast acquisition time (131 seconds), which is twice as fast as using separate conventional B<sub>1</sub> and B<sub>0</sub> mapping procedures. Moreover, the simultaneous B<sub>1</sub> and B<sub>0</sub> mapping method yields reliable and robust maps, that offer similar quality compared to the standard approaches. The presented DE-AFI procedure might therefore provide a real alternative to conventional separate B<sub>1</sub> and B<sub>0</sub> mapping.

References. 1. Yarnykh, MRM 57 (2007) 2. Nehrke, MRM 61 (2009) 3. Bernstein et al., Handbook of MRI Pulse Sequences, Elsevier (2004) 4. Akoka et al., MRI 11 (1993)

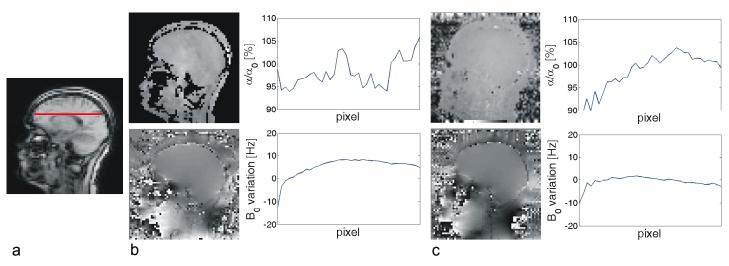



Fig.2: In vivo results showing both  $B_1$  and  $B_0$  maps. a.: Anatomical image indicating the location of the selected profile (red line). b.: Representative  $B_1$  (top) and  $B_0$  (bottom) maps acquired with the proposed simultaneous  $B_1$  and  $B_0$  mapping sequence and corresponding profiles. c.:  $B_1$  (top) and  $B_0$ (bottom) maps acquired with the two separate standard pulse sequences and corresponding profiles.