
 

 

 

Figure 1 Original, GRAPPA, regularized GRAPPA, 
IRLS, and Kernel GRAPPA with polynomial and 
Gaussian kernels when ORF = 5 and ACS = 52. 
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INTRODUCTION:  

The conventional GRAPPA method [1] reconstructs the missing k-space data by a linear combination of the acquired data. The method can suffer from severe 
noise at high accelerations. Some methods use regularization [2,3] or iterative reweighted least-squares (IRLS) [4] to reduce noise. The kernel method has recently been 
studied for regression and prediction problems and shown to outperform linear models [5,6,7]. The idea of kernel method is to transform the data nonlinearly to a higher 
dimensional space such that linear combination in the new space can approximate a broader class of nonlinear functions. Due to the improved accuracy in the regression 
model, the kernel method can improve the regression and prediction accuracy. In this abstract, we propose a kernel method to improve the conventional GRAPPA 
model and reduce the reconstruction error. We study both polynomial and Gaussian kernels for the nonlinear mapping and formulate the problem of reconstructing the 
missing k-space data as a nonlinear combination of the acquired k-space data. Experimental results demonstrate that the proposed method outperforms the conventional 
GRAPPA, regularized GRAPPA, and IRLS methods in suppressing the spatial-varying noise. 

THEORY AND METHOD:  
In conventional GRAPPA, the reconstruction is formulated as =b Ax (1), where A represents the matrix comprised of the acquired data, b denotes the vector of the 
missing data (or ACS when calibrating), and x represents the coefficient. In proposed kernel GRAPPA, we apply a nonlinear mapping Φ over the acquired 
undersampled k-space data. Under such a mapping, we will need to solve a linear system: ( )= Φb A x (2), where ( ) ( ) ( ) ( )1 2, , , T

MΦ = Φ Φ Φ⎡ ⎤⎣ ⎦A a a aL is an M×NK matrix, 

M is the number of acquired ACS data, NK is the dimension in the reproducing kernel Hilbert space (RKHS) [8] which is usually much higher than M, and ai’s are row 
vectors of the matrix A. A kernel is a continuous, symmetric and positive-definite function, and is related to the mapping Φ in that 

( ) ( ) ( )1 2 1 2 1 2, , , ,κ =< Φ Φ > ∀ ∈a a a a a a A (3), where <,> represents the inner product. It is seen that calibration using ACS is still to solve a linear 

equation: ( )( ) ( )( )( ) ( )( )
1
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= Φ Φ Φx A A A b (4), avoiding any iterative steps required in most nonlinear approaches. Once the coefficients are estimated in Eq. (4), they 

are used in reconstruction to find the missing data in outer k-space, like the conventional GRAPPA does. 

We investigate the generally used polynomial kernel [9] and Gaussian kernel [10]. A polynomial kernel takes the form of ( ) ( ),
dT

i j i j rκ γ= +a a a a , (5) where γ 

and r are scalars and d is the degree of the polynomial and the Gaussian kernel is ( ) 2 2
2, exp( || || / )i j i jκ σ= − −a a a a (6). The kernels are the inner product between two 

vectors Φ(ai) and Φ(aj). For the polynomial kernel with γ = r = 1 and d = 2, to reduce the computational complexity, we keep the first-order components 

11, 2 , , 2 Ka aK , and randomly and sparsely choose the second-order components to construct a nonlinear mapping ( )
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where a1, a2, …, aK  are components of the vector a and i, j are randomly chosen from 1, 2,…, K, such that the size of Φ(a) is equal to the desired dimension NK. With 
the polynomial kernel, the proposed kernel GRAPPA method is thereby formulated as 
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where Sj, Sl and w represent the missing (or ACS) data, acquired undersampled data and coefficients, 
respectively, and P(n) and Q(n) are randomly chosen from the acquired data and N is the number of 
randomly selected second-order terms. For the Gaussian kernel, the nonlinear mapping to the RKHS is a 
collection of ( ) 2( / )22 / ! kan n n

n k ka n a e σσ −Φ = (8) for all integer n and k = 1, 2,…, K. The above kernel 
formulation represents a more general model for GRAPPA, which includes the conventional GRAPPA as a 
special case. It is seen that the second part of kernel GRAPPA in Eq. (7) is equivalent to the conventional 
GRAPPA, which mainly captures the linear relationship between the missing and acquired signals in absent 
of noise and approximations. The first and third parts of the Eq. (7) can be used to characterize other 
nonlinear effects in practice such that noise and approximation errors are suppressed.   

RESULTS AND DISCUSSION: 
Kernel GRAPPA method was evaluated on a set of in vivo human brain data acquired using a SE 

pulse sequence (TE/TR = 10/550 ms, 31.25 kHz bandwidth, 256×256 pixels, FOV = 220 mm2) on a 3T 
scanner (GE Healthcare, Waukesha, WI, USA) with an 8-channel head coils (Invivo Corporation, 
Gainesville, FL, USA). The number of the second-order terms (N in Eq. (7)) was chosen to be 4 times of 
that of the first-order terms. The reconstructed images with an outer reduction factor (ORF) of 5 and 52 
ACS lines are shown in Fig. 1. Conventional GRAPPA, regularized GRAPPA [2], and IRLS [4] methods 
are also shown. They demonstrate that Kernel GRAPPA can suppress the noise in GRAPPA with the same 
outer reduction factors and ACS lines, without introducing aliasing artifacts as other regularization methods 
do. We also studied the effects of N in reconstruction quality and found that the result is generally good 
when N is 3-12 times of the number of the first-order terms. Within this range, the reconstruction is not 
sensitive to the changes in N and smaller values are preferred for reduced computational complexity.  

CONCLUSION: 
We propose a novel kernel-based method to improve conventional GRAPPA. The method maps the data 
onto a higher dimensional space through a nonlinear transformation such that the nonlinear model can 
characterize the relationship between the acquired and missing data more accurately. The experimental 
results demonstrate that the proposed method is superior to the conventional GRAPPA and other improved 
GRAPPA methods in suppressing noise. 
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