
Fig 1: Schematic of the CS-PCA reconstruction process  

Fig 2: Maximum Intensity projection (MIP) reconstructions at three different time 
frames out of 80 (frame rate 1.2 per second) after (a) conventional convolution 
Gridding (b) CS reconstruction alone and (c) proposed CS reconstruction 
employing PCA.   
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Introduction: Recently, the concept of Compressed Sensing (CS) has been introduced to the field of Magnetic Resonance Imaging (MRI) [1,2]. It has 
been shown that CS allows for a significant acceleration in the rate of data acquisition for MR Angiography (MRA) or real time cardiac imaging [2].  CS 
operates by taking advantage of the fact that a small fraction of the fully-sampled data, far below the sampling rate dictated by the Nyquist sampling 
theorem, is required in order to yield unaliased images if the object to be imaged can be represented in a sparse manner in an arbitrary basis and if the 
sampling scheme features incoherent artifacts. However, the CS approach tends to fail at high acceleration factors and suffers from severe artifacts if 
the noise in the data exceeds a certain limit. In order to overcome these limitations we propose to employ the concept of Principal Component Analysis 
(PCA) similar to [3] in the CS reconstruction process. We show that this strategy results in superior image quality in MRA applications and allows for 
significantly higher image acceleration factors compared to CS reconstructions that use solely CS. 

  Theory and Methods: MRA data of the head was acquired using a 3D FLASH sequence 
in sagittal image orientation with a 33% asymmetric radial read-out trajectory in-plane 
(kx,ky) and a 50% asymmetric Cartesian phase encoding in the z-direction on a 1.5T whole 
body scanner equipped with a 12 channel head array. The following sequence parameters 
were employed:  FOV = 240x240x80mm3, α = 15°, TE = 1.59ms, TR = 3.21ms, 12 radial 
projections (bit-reversed), 32 partitions, 80 repetitions. The data was reconstructed onto a 
192x192x44 matrix at a frame rate of 1.2s per volume.  The CS-PCA reconstruction was 
performed as depicted in Fig 1. After inverse Fourier Transformation (FFT) in the z-
direction the undersampled radial data was gridded onto a Cartesian k-space using 
GROG [4]. After inverse 2D FFT of each individual partition and subsequent adaptive coil 
combine (CC) of the individual channels [5], a temporal average was generated from the 
first 30 frames (before arrival of the contrast bolus) and subtracted from the remaining 
time frames (with contrast bolus) in order to remove the residual static tissue in the brain. 
After that the PCA was applied along the temporal direction in order to derive a set of basis 
vectors containing an estimate of the main contrast dynamics. After PCA, the dynamics 
are modeled in the first few principal components; the lower order components can be discarded. The new basis vectors are then used to convert the 
data into the new, heavily compressed basis which exhibits high SNR in the first few components. After an initial CS step the data are transformed back 
to the original basis (PCA-1), redistributed to the individual channels (CC-1), and finally updated with the original data in the Cartesian k-space (data 
consistency). After that an update of the basis in the image space is 
employed by applying the PCA prior to the next CS step and so forth. 
This procedure was repeated until convergence is achieved. Due to the 
iterative update of the basis after each CS step and due to data 
consistency constraint, the reconstruction is self-calibrating and does not 
require any prior knowledge about the dynamics. The CS algorithm used 
employed the minimization of the l1 norm of the images after subtraction 
of the static tissue. In addition, strict data consistency according to the 
method proposed in [6] was used allowing for regularization and 
calibration free image reconstruction. 

Results: In Fig. 2, Maximum Intensity Projections (MIPs) of the data in 
the sagittal view at three different time frames are displayed. In addition, 
in order to demonstrate the benefits of this approach, reconstructions 
using (a) conventional convolution gridding (b) conventional CS and (b) 
CS with PCA are shown.  

Conclusion:  It has been demonstrated that PCA can significantly 
improve CS reconstructions in contrast enhanced MRA, allowing for both 
increased spatial and temporal resolution. In future work the performance 
and limitations of this approach will be investigated in applications 
showing more complex dynamics such as e.g. real-time cardiac imaging. 

References: [1] Candès et al.; IEEE Trans. Inform. Theory, (2004); [2] 
Lustig et al, Magn. Reson. Med. 58 (2007) 1182–1195. [3] Brinegar et al, 
Magn Reson Med. 2010 Oct;64(4):1162-70 [4] D.O. Walsh et al.; Magn 
Reson Med, V.43, pp.682-690 (2000) [5] N. Seiberlich et al.; Magn 
Reson Med. 2007 Dec;58(6):1257-65. [6] Chartrand, IEEE Signal. Proc. 
Lett. 14 (2007) 707–710. 
Acknowledgements: The authors like to thank Siemens Medical 
Solutions, the Bavarian Ministry of Economic Affairs, Infrastructure, 
Transport and Technology (BayStMWIVT) and the NIH 1RO1HL094557 
and K99 EB011527-02 for funding.  

 

Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) 4379


