Accelerated Multi-TI Spiral MRI using Compressed Sensing with Temporal Constraints
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and multi-inversion-time (TI) arterial spin labeling (ASL). However, while multi-TI ASL
enables the measurement of parameters such as blood volume, mean transit time, and transit
delay in addition to blood flow, the acquisition of multi-TI data is also time consuming. We
sought to accelerate multi-T1I spiral MRI using compressed sensing (CS). Toward this end, we
exploited sparsity in time, investigated different sampling patterns, and used the non-uniform fast s,
Fourier transform .(NUFITT) Fo transform data bet\yeen image space and. k-space. - B

Theory: For multi-TI spiral images (ASL source images), signal intensity changes smoothly with /A//l/l
TI, exhibiting sparsity in the temporal domain. However, due to effects such as transit delay, the /
kinetic signal may not be well described by a simple model such as a sum of T1-relaxation curves.

For this reason, instead of a model-based CS approach (1), we implemented a general temporal

smoothness constraint using finite-difference methods. Also, because a spiral trajectory does not

sample k-space on the Cartesian grid, we used the NUFFT to transform data between image space — ¢
and k-space (2). Accounting for these factors, we expressed the CS reconstruction problem as:
F ey M — sz + iHV m H] ), where m is the image, y is the measured k-space

Introduction: Previously, studies have shown that spiral MRI is advantageous for Look-Locker A /j/ - /j/ e

Fig. 1. Uniform rotation (top A) and random (bottom

m = arg min B) undersampling patterns. Four consecutive frames

data on spiral trajectories, Fxurrr is the undersampled NUFFT, y is the temporal gradient, ) is a are shown on the left and the composite of these four

! frames are shown on the right. For a period during the
scan, uniform rotation sampling covers a larger area of
k-space than the random sampling pattern.

weighting factor for the temporal constraints, and || ||, and || ||; are the L2 and L1 norms,
respectively (4,5). The first term is the residue term, where the NUFFT operator transforms the
estimated image to k-space data on spiral trajectories to compute the difference from the
measured data. The second term is the sparsity term, where the temporal constraint is
introduced and evaluated using the L1 norm. The sparsity term drives the estimated image

to be temporally smooth in intensity while the residue term maintains the signal fidelity.

The balance between terms is adjusted using A. An approximation is taken to avoid an L1
norm gradient discontinuity around zero (5). A steepest descent method was implemented

to solve this optimization problem and m was updated using , = = m,+aAm - where

o is the iteration step size and

2 .
Am = Vf(m)= ZF,\le'FFT (FNUFFT m— y)_ ﬂ'[v’m,‘
NV.m(V,m) +¢
The NUFFT with min-max interpolation minimizes the worst-case approximation error
over all signals. An analytical density compensation function (DCF) was used when
converting the k-space residue term to the image domain to compensate for non-uniform
sampling. To correct the image difference after a pair of NUFFT and inverse NUFFT

operations, a scaling factor was introduced to the DCF as B = max (F.’\TLI'FFT (FNUFFT m, )) s P

where m, is a 2D image with a Kronecker delta function at the center. Fig. 2. CS reconstructed images example. A-D are fuly sampled
Methods: Fully-sampled spiral Look-Locker MRI of the mouse heart, as described images. E-H are images from acceleration rate 2 and uniform
previously (3), was performed at multiple TIs using a 7T ClinScan MRI system (Siemens, rotation pattern undersampled k-space. I-L are images from rate 2
Erlangen, Germany), with the following imaging parameters: field of view = 30 x 30 mm?, and random pattern undersampled k-space. Four columns

pixel size = 0.24 x 0.24 mm?, number of spiral interleaves = 87, number of inversion times represent four different TIs.

= 50, and time between inversions = 6 s. Two types of undersampling patterns were

investigated. The first type (random) selected random interleaves from fully sampled data

for each frame, where the total number of interleaves for each frame was determined by the Hrot

acceleration rate (Fig.1.A). The second type (uniform rotation) used rotations of angularly- m Orand

uniformly spaced interleaves, where the initial rotation angle was incremented for successive E

frames (Fig.1.B). The CS algorithm was implemented in MATLAB. For all data sets, 600 PN b

iterations were used to reach a steady state. Acceleration rates of 2, 4 and 6 were tested using E oa |

both undersampling patterns. % ’

Results: Excellent image quality was obtained for CS multi-TI spiral images, as illustrated in ~ 0z |

Fig. 2, where rate-2 CS accelerated images (Fig. 2, E-H) appear nearly identical to fully sampled

images that underwent conventional reconstruction (Fig. 2, A-D). In the examination of different ° j_| \ . ,

undersampling patterns, better image quality was consistently obtained using the uniform
rotation pattern as compared to randomly selected interleaves. This finding is illustrated in Fig.
2, where fully sampled images at four different TIs are shown in the top row (A-D), rate-2
accelerated images using the uniform rotation pattern are shown in the middle row (E-H), and
rate-2 accelerated images using random interleaves are shown in the bottom row (I-L). This
finding is reiterated in Fig. 3, where mean squared error (MSE) results show that the uniform
rotation method has lower MSE than random interleaves. MSE results also illustrate greater error for higher acceleration rates.

Conclusions: CS for accelerated spiral MRI of multi-TI Look-Locker MRI was investigated. Temporal sparsity was incorporated into a constrained nonlinear iterative
reconstruction algorithm. A sampling pattern employing rotations of angularly-uniformly spaced interleaves provided better image quality compared to randomly
selected interleaves. Rate-2 acceleration led to excellent image quality, with artifacts becoming more prominent at higher acceleration rates. Future work will
investigate using variable density spirals to achieve full sampling at the center of k-space with undersampling at higher spatial frequencies. This approach may be lead
to better image quality at higher acceleration rates. CS shows promise for achieving at least rate 2 acceleration of multi-TI spiral images for use in multi-TI ASL.
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Fig. 3. Image reconstruction errors of rate 2, 4 and 6 from

uniform rotation and random patterns. Errors are
calculated as relative MSE to fully sampled images.
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