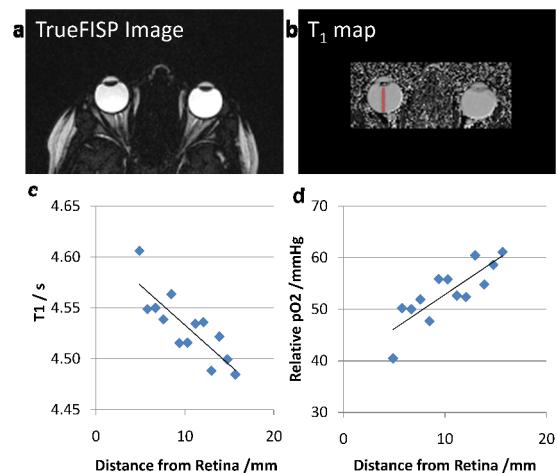


Measurement of eye pO₂ using T₁ mapping has precision ~8 mmHg and shows oxygenation gradient between retina and lens

N. G. Dowell¹, E. H. Hughes², and P. S. Tofts¹

¹Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, Sussex, United Kingdom, ²Sussex Eye Hospital, Brighton, Sussex, United Kingdom

Aims: 1. To measure oxygenation (pO₂) in the vitreous humour (the clear gel that fills the eyeball between the lens and the retina). 2. To detect regional variation of oxygenation through the vitreous humour of the eye.


Background: Vitrectomy (removal of vitreous humour from the eye, and replacement with saline) is a highly invasive clinical procedure that is carried out for various conditions such as retinal vascular disease and diabetic retinopathy. It has been proposed that the beneficial effect of retinopathy may be due to improved oxygenation of the inside of the eye and hence the retina. Although the partial pressure of oxygen (pO₂) has been measured during vitrectomy (using a very unpleasant procedure involving an intraocular probe) there has been no direct evidence that an increase in pO₂ is achieved or how the regional variation of pO₂ is affected within the eye. MRI provides a non-invasive method of measuring pO₂ in the eye [1]. In pure oxygen-free water at 1.5 T and 37°C T₁=4.74s [2]. T₁ relaxation times are decreased by the presence of paramagnetic O₂: an increase in pO₂ of 10 mmHg results in a decrease in T₁ of 47 ms (1.14 %) [3]. Therefore, an accurate and precise measure of T₁ could provide a reliable measure of pO₂. Here we demonstrate that we can precisely measure pO₂ by overcoming the challenges of eye imaging [4]: we control eye movement and blink artefacts and eliminate image distortion around the eye by careful implementation of the MRI acquisition sequence.

Methods: Healthy volunteers were imaged on a Siemens Avanto 1.5 T scanner. Each participant was scanned twice (removed from the scanner and replaced) in the same session to assess reproducibility. T₁ mapping was performed using an inversion recovery (IR)-trueFISP sequence with 17 inversion times in the range TI=0.7s – 30s. We screened for banding artefacts with a low flip angle truefisp acquisition and, if present, the banding artefacts were moved away from the eyes by changing the frequency offset. A single slice was positioned through the centre of both eyes in the axial orientation. Other trueFISP parameters were: TR=(20+TI) s, TE = 1.52 ms, FA = 80°, matrix = 256x256, voxel dimensions = 0.9x0.9x4 mm³. The total scan time for T₁ measurement is 15 mins. T₁ mapping was achieved by performing a pixel-by-pixel three-parameter fit of the signal intensity S (at each TI) to the equation $S(TI) = A + Be^{TI/T1}$; A and B are parameters that account for inversion pulse flip angle FA, equilibrium signal intensity and TR. Since FA is included, the technique is resilient to B₁ errors. Eye movement was controlled by providing the subject with an audio countdown to alert them to the acquisition of the slice. They were instructed to fixate on a spot on the scanner room wall for the duration of the acquisition (<1 s). Thus, eye movement was eliminated during data acquisition. Subjects were encouraged to relax or close their eyes between acquisitions to avoid eye fatigue. Precision (reproducibility) was estimated from the repeats using the Bland-Altman method [5].

Results: The trueFISP sequence provides high-resolution undistorted eye images with excellent SNR. Slice acquisition time is <1 s, during which the participant can easily fixate to eliminate eye-movement artefacts without inducing eye fatigue (Fig. 1a). Bland-Alman estimation of within-subject variability is calculated as 40 ms (<1%) for T₁ (8 mmHg for pO₂). T₁ measurements show a subtle decrease towards the lens of the eye (Fig. 1b,c), indicating an increase in oxygenation towards the air-eye interface and away from the retina (Fig. 1d). The range in pO₂ is about 20 mmHg, which agrees with *in vivo* pO₂ ranges measured with an intraocular pO₂ probe. [6]

Discussion: We have demonstrated that it is possible to acquire T₁ maps of the human eye without image distortion or eye movements. This technique has important implications for a wide range of eye imaging studies e.g. in retinopathy [7] or optic nerve [8]. Furthermore, it may be possible to assess the therapeutic value of highly invasive eye surgery such as vitrectomy without the need for an invasive eye probe.

References: [1] Dowell *Proc. ISMRM* 2010;2408, [2] Tofts *MRM* 2008;59:190-195, [3] Zaharchuk *MRM* 2005;54:113-121, [4] Berkowitz *MRM* 2001;46:412-416, [5] Bland *Lancet* 1986;1(8476):307-310, [6] Williamson *Graefes. Arch Clin Exp Ophthalmol* 2009;247:1019-1023, [7] Berkowitz *NMR Biomed* 2008;21:957-967, [8] Dowell *JMRI* 2009;29:454-460

Figure 1

(a) TrueFISP image and (b) T₁ map showing an undistorted image of the eyes. (c) T₁ gradient through left eye along the profile shown in the T₁ map. (d) Relative pO₂ gradient calculated from the T₁ measures in (c). A similar calculation was performed for the right eye (not shown).