

Simultaneous High Resolution Ex-vivo Diffusion Imaging of White Matter and Muscles

T. Benner¹, A. Stevens¹, M. Roy¹, and B. Fischl¹

¹Radiology, Athinoula A. Martinos Center, Charlestown, MA, United States

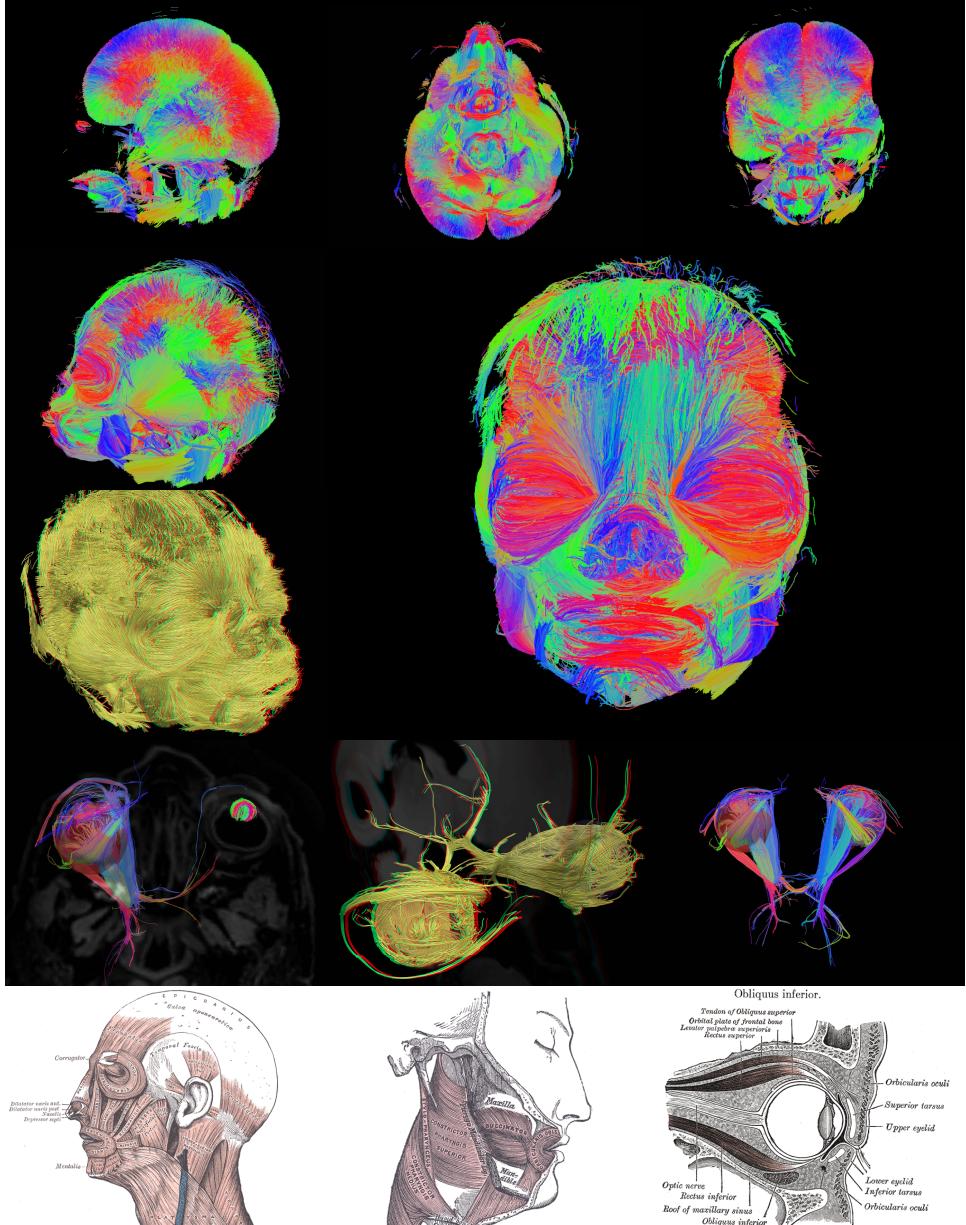
Introduction

Diffusion-weighted imaging of fetal brain samples requires high spatial resolution given the small size of the samples. 2D single-shot echo-planar imaging (EPI) is not well suited for this purpose because of the limits in achievable slice thickness and in-plane resolution. 3D multi-shot EPI allows imaging with thinner slices and higher in-plane resolution, however, it is limited by the long repetition time required for T1 relaxation from shot to shot. In contrast, diffusion-weighted steady state free precession (DW-SSFP) imaging allows imaging at high spatial resolutions of 1 mm^3 or higher without these limitations [1-3]. In addition to white matter fiber tracking, diffusion imaging can also be used to depict muscle tissue [4-9]. In this study, DW-SSFP was used to simultaneously depict brain fiber tracts as well as facial muscle tissue in fetal brain samples.

Methods

Imaging was done on a 7 T MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a custom solenoid coil. Diffusion tensor imaging scans were performed on an ex-vivo fetal brain of 22 weeks gestation using a 3D DW-SSFP sequence with the following imaging parameters: TR = 19.9 ms, TE = 14.9 ms, matrix size $224 \times 168 \times 160$, $90 \times 67.5 \times 64 \text{ mm}^3$ FoV, 0.4 mm isotropic spatial resolution i.e. 0.064 mm^3 voxel size, bandwidth 150 Hz/px, 4 non-diffusion-weighted volumes and 56 diffusion-weighted volumes, resulting in a scan time of 7 hours. Eight such acquisitions were co-registered using FSL's FLIRT to correct for B_0 drift and eddy-current distortions [10] and then averaged before further processing. Fiber tracking and visualization were performed using custom-made programs written in C++ using Qt and VTK (<http://www.trackvis.org/>) [11]. The fiber tracking algorithm is based on the Fiber Assignment by Continuous Tracking (FACT) algorithm [12]. For visualization, fibers were selected based on seed regions and length thresholds.

Results and Conclusion


Figure 1 shows examples of fiber tracking results depicting fibers in white matter and muscle tissue. Tensor-based white matter fiber tracking worked well. Facial, neck, and extraocular muscles are clearly visible at high detail. In summary, it is feasible to image brain samples at high spatial resolution at 7 T using DW-SSFP to depict white matter and muscle anatomy simultaneously.

Acknowledgments

This research was carried out at the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, P41RR14075, a P41 Regional Resource supported by the Biomedical Technology Program of the National Center for Research Resources (NCRR), National Institutes of Health. This study was supported by the Allen Institute for Brain Science (1RC2MH089921-01).

References

- [1] LeBihan D. Magn Reson Med 1988;7(3):346-351. [2]
- McNab JA, Miller KL. Magn Reson Med. 2008;60(2):405-413. [3] Benner et al. Proc. 17th ISMRM 2009, 3535. [4]
- Gilbert R.J. and Napadow V.J. Dysphagia, 20(1):1-7, 2005.
- [5] Wedeen V.J. et al. Magn Reson Med, 54(6):1377-1386, 2005. [6] Gilbert R.J. et al. Biophysical J, 91(3):1014-1022, 2006. [7] Gilbert R.J. et al. Anatomical Record, 288(11):1173-1182, 2006. [8] Weiss S. et al. Anat Rec A Discov Mol Cell Evol Biol, 288(1):84-90, 2006. [9] Zaraiskaya T. et al. J Magn Reson Imaging, 24(2):402-408, 2006. [10] Jenkinson M, Smith SM. Medical Image Analysis, 2001;5(2):143-156. [11] Wang R, Wedeen V.J. Proc. 15th ISMRM 2007, 3720. [12] Mori S. et al. Ann Neurol, 45(2):265-269, 1999. [13] Gray H. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918; Bartleby.com, 2000.

Figure 1: Examples of fiber tracking results focused on brain and muscle tissue as well as pictures from an anatomy textbook for comparison [13]. Subfigures with yellow tracts are anaglyph images to provide a stereoscopic 3D effect when viewed with red/cyan glasses.