Classification of Tissue Oxygenation Properties based on Simultaneous Dynamic ΔR₁ and ΔR₂* D(C)O₂E-MRI

S. Remmele¹, A. Müller², F. Träber², I. Wenningmann³, M. von Lehe⁴, J. Gieseke^{2,5}, S. Flacke^{2,6}, W. A. Willinek², H. H. Schild², J. Keupp¹, and P. Mürtz²

¹Philips Research Laboratories, Hamburg, Germany, ²Department of Radiology, University of Bonn, Bonn, Germany, ³Department of Anesthesiology, University of Bonn, Bonn, Germany, ⁴Department of Neurosurgery, University of Bonn, Bonn, Germany, ⁵Philips Healthcare, Best, Netherlands, ⁶Department of Radiology, Lahey Clinic, Tufts University Medical School, MA, United States

Introduction

The monitoring of respiratory challenges with dynamic $(C)O_2$ -enhanced $(D(C)O_2E)$ MRI is gaining increasing interest for the assessment of tumor oxygenation, vasoreactivity, vessel maturity and function, all being important parameters that decide about optimal treatment strategies [1,2]. The two major research directions propagate either the measurement of R_1 or R_2 * during $(C)O_2$ breathing to monitor the voxel concentrations of the two endogenous "contrast agents" altered by arterial pO_2 , blood flow and volume changes: dissolved molecular O_2 (mO_2) and the deoxygenated hemoglobin fraction (dHb). Being paramagnetic agents, both increase R_1 and R_2 * with R_1 primarily representing mO_2 [3] and R_2 * primarily representing dHb [4], respectively. Consequently, preclinical studies have recently shown [5,6] that the investigation of both effects increases the specificity of $D(C)O_2E$ MRI. These studies either performed simultaneous R_1 and R_2 * weighted imaging or quantified R_1 and R_2 * in sequential and separate measurements. To avoid additional experiments and thus to improve accuracy and time efficiency in clinical applications, we devised an approach to simultaneous and dynamic ΔR_1 , ΔR_2 * quantification and applied it to patients and a volunteer. The multi-parametric findings are related to tissue-specific properties of intracranial tumors.

Methods

Informed consent was obtained from 4 patients with intracranial tumors (metastasis, 2 glioblastoma, lymphoma) and a volunteer. All underwent a respiratory challenge with 1/4/2min of air/carbogen/air breathing [7]. Dynamic and simultaneous R_1 and R_2^* quantification is based on a spoiled gradient-echo short-TR sequence with multiple echoes as described in [8] with a temporal resolution of 2.2s/frame: R_2^* is obtained from the multi-echo signal decay, R_1 is obtained from the steady-state signal M_0 and an a-priori $R_{1,0}$ and $B_{1,0}$ measurement. Dynamic protocol: 2D, TR=98ms, 12 echoes, α =25°, 1.8x1.8x5mm³, REST slabs above and below the imaging slice. $R_{1,0}$ [9]: MS, TSE-factor = 40, 1.8x1.8x5mm³, TR_{1R}/TR_{SE} =3s/1.3s, B_1 0: AFI, 3D, α =50°, $TR_{1,2}$ = 19ms, 79ms, 3.6x3.6x3mm³. Imaging was carried out on a 3T clinical scanner (Philips Achieva TX, The Netherlands) using a solenoid head coil. From the dynamic ΔR_1 and ΔR_2^* series, ΔR_1 and ΔR_2^* response maps were generated that depict the voxel-wise amplitude of the response to an (C)O₂ challenge as described in [10] after motion-correction and registration of all a-priori and dynamic data. Edema, necrotic, and enhancing tumor regions, as confirmed by standard MRI, were segmented as well as gray and white matter and CSF based on the $R_{1,0}$ map. The tissue-specific voxel-wise response amplitudes in the segmented areas were plotted in ΔR_1 over ΔR_2^* plots. The processing workflow is outlined in **Fig. 1**.

Results and Discussion

The ΔR_1 , ΔR_2^* response of gray and white matter ("normal vascularization") clustered in the left upper quarter of the ΔR_1 , ΔR_2^* plot, which is consistent with a decrease in dHb and an increase in mO₂ during carbogen breathing. Necrotic tissue, edema, and CSF (high liquid content) were located in the right upper quarter, which is consistent with a dominant mO₂ effect. The response in enhancing tumor area of the lymphoma did not differ from that in grey and white matter, whereas for the glioblastomas and the metastasis (**Fig. 2**) a relevant amount of voxels with large negative ΔR_2^* values were found. In combination with the high baseline R_2^* value in that area (not shown), this suggests a high blood volume with a low baseline oxygen saturation (SO₂) and thus a dominant impact of the dHb decrease on R_2^* and R_1 . Our findings suggest that, based on the R_1 and R_2^* response to elevated O₂ levels, tissue can be classified according to its dHb and mO₂ properties, respectively (**Fig. 3**). E.g. Areas of low blood volume and well vascularized areas with high baseline SO₂ cannot be distinguished by ΔR_2^* alone (both show low ΔR_2^*) but they differ in ΔR_1 .On the other hand, in areas with low baseline SO₂, R_2^* will decrease with the decreasing dHb content, whereas the R_1 response might be less pronounced due to the dominant dHb effect that counteracts any mO₂ related R_1 increase [4].

Conclusion

Previous studies of dynamic R_2^* or R_1 changes in response to oxygen-enriched air inhalation gave insight into blood and tissue oxygenation properties, although the interpretation becomes difficult in the absence of a significant R_2^* or R_1 response. Simultaneous dynamic R_1 and R_2^* measurements provide information on both, the effects of dHb and mO₂, and are therefore expected to increase the specificity of (C)O₂-enhanced MRI.

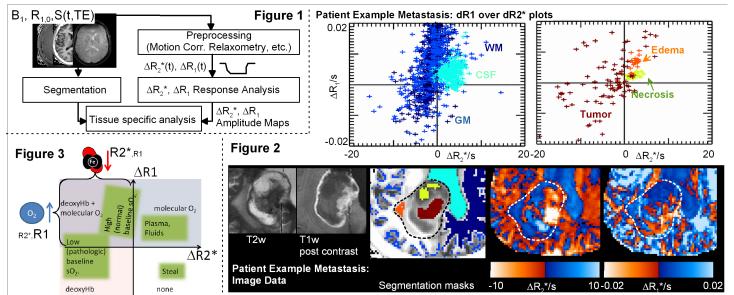


Fig 1: Processing Workflow. Fig.2 Upper row: ΔR_1 over ΔR_2^* plots of the tissue-specific voxel-wise response amplitudes. The different colors represent different segmented areas as depicted in the segmentation mask below. Lower row: Imaging results, segmentation masks and ΔR_1 over ΔR_2^* response maps to the carbogen challenge. Fig. 3: Tissue classification derived from the multi-parametric response findings.

[1] Neeman M, et al, MRM 45, 2001, [2] Rijpkema M, et al, Int. J. Rad. Onc. Biol. Phys. 53, 2002, [3] O'Connor JPB et al, Int. J. Rad. Onc. Biol. Phys. 75, 2009, [4] Blockley NP, et al, MRM 60, 2008, [5] Burrell JS, et al, ISMRM 18, 4828, 2010, [6] Zhou H, et al, ISMRM 18, 2793, 2010, [7] Müller A, et al, JMRI 32, 2010, [8] Remmele S, et al, ISMRM 18, 5121,2010 [9] Jensen ME, et al, Internet J. Rad. 2, 2001, [10] Remmele S, et al, JMRI 31, 2010