

In vitro and In vivo Studies of ^{17}O NMR Sensitivity at 9.4 and 16.4 Tesla

M. Lu^{1,2}, X. Wang^{1,2}, R. Taylor^{1,2}, Y. Zhang^{1,2}, K. Ugurbil^{1,2}, W. Chen^{1,2}, and X-H. Zhu^{1,2}

¹Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States, ²Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States

Introduction

The lack of non-destructive and robust *in vivo* imaging approaches for investigating cellular oxidative metabolism has limited our understanding of the mechanism underlying metabolic alteration between normal and diseased tissues. Direct observing the dynamics of metabolic H_2^{17}O production from the reduction of ^{17}O -labeled oxygen gas provides an opportunity to quantify and image the cerebral rate of oxygen consumption (CMRO_2) *in vivo*. However, the efforts of direct monitoring the accumulation rate of H_2^{17}O have been suffered from the low NMR detection sensitivity due to the very low gyromagnetic ratio of the ^{17}O spin and low H_2^{17}O content. It is known that the optimal signal-to-noise ratio (SNR) for detecting NMR signals depends on field strength (B_0), T_1 , T_2^* and the RF coil quality factor (Q) according to the following relationship:

$$\text{SNR} \propto B_0^\beta \sqrt{\frac{QT_2^*}{T_1}}$$

Two previous studies have compared the *in vitro* and *in vivo* ^{17}O NMR sensitivity between 4.7T and 9.4T, and between 4.7T and 11T, respectively (1,2), suggesting great advantages of high field. The unique properties of ^{17}O , i.e., the independence of ^{17}O relaxation times (T_1 and T_2) on the field strength (1,2) and extremely short T_1 , also contribute to a large gain of ^{17}O NMR sensitivity at high/ultrahigh field. In this study, ^{17}O NMR sensitivity was measured and compared using the natural abundance H_2^{17}O signal in phantom solution and rat brain at 9.4T and 16.4T to quantify the possible SNR gain for *in vivo* ^{17}O NMR application using the newly developed large-bore animal scanner with ultrahigh (highest) field of 16.4T.

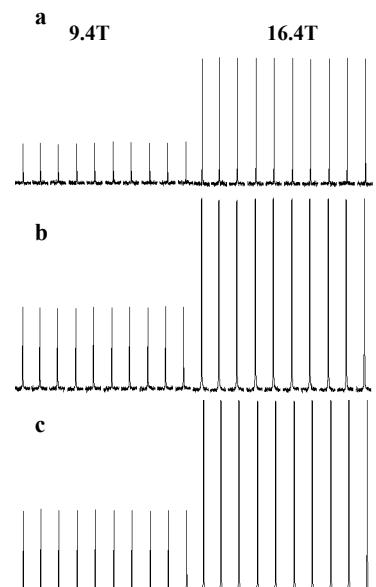
Methods

All NMR measurements were performed on either a 9.4T/31cm or a 16.4T/26cm bore magnet (Magnex Scientific) interfaced to VNMRJ consoles (Varian, CA). For both *in vitro* and *in vivo* studies, a ^{17}O radiofrequency (RF) probe consisting of a two-turn, oval (18mm×13mm) shaped surface-coil was designed and constructed. Its resonance frequency can be tuned to either 54.25 MHz for 9.4T or 94.65 MHz for 16.4T application. A 6mm-diameter glass sphere filled with natural abundance ^{17}O water was fixed on the RF probe for all phantom studies at both fields. A male Sprague Dawley rat was anesthetized and imaged for measuring and quantifying SNR of natural abundance brain H_2^{17}O at 9.4T and 16.4T using the same surface-coil, which was placed over the cortical regions in the rat brain to obtain optimum *in vivo* sensitivity. The single-pulse-acquire sequence was applied to obtain the optimal ^{17}O SNR with a nominal 90° RF excitation pulse and following acquisition parameters: 20 kHz spectral width, 512 number of points for each FID, 7 s temporal resolution with 128 signal averages for phantom measurements and 512 (28 s temporal resolution) or 128 averages for *in vivo* studies. The raw NMR signal was processed by exponential filtering with a line broadening of 100 Hz to enhance SNR, followed by Fourier transformation. The ^{17}O NMR sensitivity was evaluated using the SNR of H_2^{17}O resonance peak calculated by dividing peak intensity by the standard deviation of the noise. Another relevant question is whether the ^{17}O signal is stable among repeated measurements; thus, the stability of the ^{17}O signal was also assessed by computing the standard deviation of H_2^{17}O signals from 10 repetitions of data acquisition.

Results

Figure 1 shows typical ^{17}O NMR spectra of natural abundance H_2^{17}O acquired from the sphere phantom and *in vivo* rat brain at two field strengths with the same vertical display scale. The average ^{17}O SNR gain at 16.4T was 2.9 and 2.6-fold higher than that at 9.4T, for the phantom and rat brain studies, respectively, as summarized in Table 1. The ^{17}O signal stabilities at both field strengths are also shown in Table 1. The overall results clearly demonstrate excellent sensitivity and high stability at both fields for obtaining the ^{17}O signals of natural abundance H_2^{17}O (lowest concentration in nature) from either phantom or brain. Nevertheless, the 16.4T scanner offers striking improvements in both sensitivity and reproducibility.

Discussion and Conclusion


In the present study, we examined the *in vitro* and *in vivo* ^{17}O NMR sensitivity at two high field strengths. The results indicate an approximated 2.6~3-fold SNR gain at 16.4T compared with 9.4T. Also, an approximated square power ($\beta=1.7\sim2$) dependence of ^{17}O SNR on B_0 was indicated, and this value is consistent with previous reports (1,2) and the theoretical prediction of 7/4. The significant SNR improvements achieved at 16.4T should benefit 3D CMRO_2 imaging based on the ^{17}O MRS method, which should provide an opportunity to detect altered oxidative metabolism associated with brain function and neurological diseases with improved spatial and temporal resolutions.

Acknowledgements

This work is supported in part by NIH grants NS41262, NS57560, P41 RR08079 and P30 NS057091, S10 RR025031; and the Keck foundation.

References

- Zhu, X. H., Merkle, H., Kwag, J. H., Ugurbil, K., and Chen, W. (2001) *Mag. Reson. Med.* **45**, 543-549.
- Thelwall, P. E., Blackband, S. J., Chen, W. (2003) *Proc. Int'l. Soc. Mag. Reson. Med.* p. 504.

Figure 1. ^{17}O spectra of the sphere (a) and *in vivo* rat brain (b) with 128 averages. *In vivo* rat brain ^{17}O spectra with 512 averages (c).

Table 1. ^{17}O SNR and signal stability comparisons between 9.4T and 16.4T

	Sphere (128 averages)	Rat Brain (128 averages)	Rat Brain (512 averages)
$\text{SNR}_{9.4\text{T}}$	36.8 ± 3.5	69.9 ± 5.8	142.4 ± 15.8
$\text{SNR}_{16.4\text{T}}$	108.4 ± 11.3	178.6 ± 8.1	349.6 ± 46.8
$\text{SNR}_{16.4\text{T}}/\text{SNR}_{9.4\text{T}}$	2.9	2.6	2.5
Stability at 9.4T	2.19%	0.84%	0.66%
Stability at 16.4T	0.53%	0.43%	0.27%