

LONGITUDINAL DTI OF WHITE MATTER INJURY IN EXPERIMENTAL INTRACEREBRAL HEMORRHAGE

S. J. Fan^{1,2}, M. M. Cheung^{1,2}, A. Y. Ding^{1,2}, F. Y. Lee^{1,2}, Z. W. Qiao^{1,2}, J. Yang³, and E. X. Wu^{1,2}

¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China, People's Republic of, ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China, People's Republic of, ³Medical Imaging Center of the First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, Shanxi Province, China, People's Republic of

Introduction

White matter injury is closely related to motor outcome after intracerebral hemorrhage (ICH)¹. Recent clinical studies have demonstrated that DTI metrics of corticospinal tract (CST), including pyramidal tract (PY), could be utilized to predict the functional outcome of ICH^{2,3}. However, such findings in patients were largely preliminary due to inconvenient follow-up investigations, small number of patients and such inter-patient variances as hemorrhage volume, physical state and treatment intervention. Previous MRI studies of experimental ICH mainly dealt with the changes of the hemorrhage and its surrounding areas^{4,5}, while white matter injury was poorly understood. This study aims to employ longitudinal DTI to characterize white matter injury in the well-controlled collagenase-induced ICH rodent model, which closely resembles spontaneous ICH in human⁶.

Methods

Animal Preparation: Five female Sprague-Dawley (SD) rats (~15wks; 320~340g) were stereotactically infused with 0.28U collagenase (Type IV, C5138, Sigma) in 1.4 μ L heparinized saline (0.125 μ L/min) into the right basal ganglia⁶. MRI was performed in all animals at 3 to 4 hours, 1 day, 3, 7, 14, 28 and 42 days after the surgical insult. **MRI Protocols:** All MRI experiments were performed on a 7T Bruker MRI scanner. Under inhaled isoflurane anesthesia, the animal was kept warm by circulating water at 37°C. Diffusion-weighted images (DWIs) were acquired with a SE 4-shot EPI with 30 diffusion gradient directions and 5 b_0 using: TR/TE=3750/32ms, $\delta/\Delta=5/17$ ms, resolution=273 \times 273 \times 1000 μ m³, b =1000/mm² and NEX=3. 2D T₂-weighted images (T₂WIs) were acquired with TR/TE=3600/38.9ms, FOV=30 \times 30mm², matrix=256 \times 256, slice thickness=1.0mm, RARE factor=8 and NEX=2. T₁WIs were acquired with the same dimensions with TR/TE=400/8ms, RARE factor=4 and NEX=28. **Data Analysis:** Fractional anisotropy (FA), axial (λ_{\parallel}) and radial (λ_{\perp}) diffusivity maps were generated from DWIs using DTIStudio for quantitative analysis. ROIs were first manually delineated in FA and λ_{\perp} diffusivity maps⁷ over external capsule (EC) and pyramidal tract (PY) of both hemispheres on 3 consecutive slices (Fig. 1). Paired t-test was performed for comparison of DTI metrics between ipsi- and contra-lesional EC and PY at each time point (* p < 0.05, ** p < 0.01).

Results

Fig. 2 shows the longitudinal changes of FA, λ_{\parallel} and λ_{\perp} in ipsilesional EC (Ipsi EC) and PY (Ipsi PY), as compared with their contralesional counterparts (Contra EC and Contra PY, respectively). At 3 to 4 hours after ICH, significant decrease in FA value (33.5%) and increase in λ_{\perp} (31.6%) were observed in ipsilesional EC, while increase in λ_{\perp} was observed in both ipsilesional EC (85.5%) and PY (15.9%). At 1 day after ICH, ipsilesional EC showed lower FA value than the contralesional side, while no significant difference was found in λ_{\parallel} , λ_{\perp} and trace. At 3 days after ICH, decrease in FA value and λ_{\parallel} were detected in the ipsilesional PY, but not accompanied by increase in λ_{\perp} . At 7 days and afterwards, lower FA value was observed in both ipsilesional EC and PY. In ipsilesional PY, such FA change was accompanied by λ_{\parallel} decrease and λ_{\perp} increase at all time points. In Fig. 3, the top panel shows increased T₂W signal in both ipsi- and contralesional external capsules within 1 day after ICH, while ipsilesional hyperintensity was retained at 14 days after ICH; the bottom panel shows typical T₂- and T₁-weighted images at 14 days after ICH, where no evident difference was observed between ipsi- and contra-lesional PY.

Discussions and Conclusion

In this study, ipsilesional EC showed a decrease in FA value within 4 hours after ICH, as a result of a dominant increase in λ_{\perp} over λ_{\parallel} . The decrease in FA value persisted from 7 days up to 6 weeks after ICH, but not accompanied by significant decrease in λ_{\parallel} . This implied that the diffusivity changes in ipsilesional EC was mainly due to vasogenic edema after ICH⁸, with characteristic increase in T₂W signal intensities⁹ as shown in Fig. 3. Ipsilesional PY showed a decrease in FA and λ_{\parallel} at 3 days after ICH, and delayed increase in λ_{\perp} at 7 days after ICH. These changes retained for up to 6 weeks. Meanwhile, no evident signal difference was observed between the ipsi- and contra-lesional PY on T₂- and T₁-weighted images, suggesting that the changes in DTI metrics was not likely due to vasogenic edema. These findings implied that Wallerian degeneration of PY may have occurred, which would lead to initial axonal disintegration and subsequent demyelination and fiber tract atrophy, similar to that observed in ischemic strokes¹⁰. In summary, this study characterized longitudinal changes of DTI metrics in white matter for the first time in a well-established experimental ICH model. Diffusivity changes in ipsilesional EC was shown to be mainly due to brain edema. Wallerian degeneration in PY was detected by

DTI within 3 days after ICH, and characterized by FA and λ_{\parallel} decrease and λ_{\perp} increase. Such degeneration could not be identified on conventional T₁- and T₂-weighted images at 2 weeks after ICH. The diffusivity changes persisted up to 6 weeks after ICH, suggesting an irreversible axonal and myelin damage. These findings provided a more comprehensive understanding of diffusivity changes in PY after ICH, and further support the utilization of DTI for early prognosis and longitudinal monitoring of this human disease. Correlation of early-phase DTI metrics and outcome of motor function will be further investigated to assess the accuracy of DTI in ICH prognosis.

References

- Wasserman JK, et al. *Exp Neurol*. 2008;214:266-275.
- Yoshioka H., et al. *Neurosurgery*. 2008;62:97-103.
- Kusano Y, et al. *AJNR Am J Neuroradiol*. 2009;30: 1561-1565.
- Haris M, et al. *J Magn Reson Imaging*. 2006;24:1259-1268.
- Knight RA, et al. *Stroke*. 2008;39:2596-2602.
- Imamura N, et al. *Neurosci Res*. 2003;46:289-298.
- Hui ES, et al. *NeuroImage*. 2008;42:122-134.
- Del Bigio MR, et al. *Stroke*. 1996; 27: 2312-2320.
- Mukherjee P, et al. *Radiology*. 2000;215:211-20.
- Thomalla G, et al. *NeuroImage*. 2004; 22:1767-1774.

Fig.3 Top panel: T₂WIs of external capsules at 3.5 hours, 1 day and 14 days after ICH; bottom panel: T₂WI and T₁WI of pyramidal tract at 14 days after ICH.

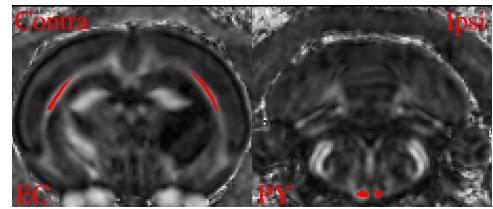


Fig.1 ROI definition of external capsule (EC) and pyramidal tract (PY) in both hemispheres.

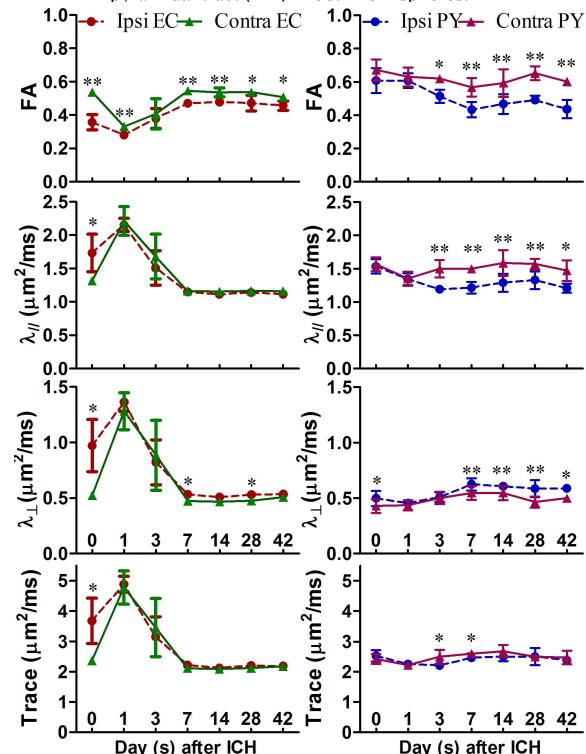


Fig.2 Comparison of DTI metrics (Mean \pm SD) in ipsilesional external capsule (Ipsi EC) and pyramidal tract (Ipsi PY) versus their contralesional counterparts (Contra EC and Contra PY). Two-tailed paired t-test was performed at each time point (n=5, * p < 0.05, ** p < 0.01).