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Introduction   The Extended Kety model (also known as the Modified Tofts model [1]) is a compartmental model that is widely used for modelling DCE-
MRI data.  It is well known that estimates of the plasma volume fraction parameter (vp) are subject to large errors compared with other parameters that can 
be obtained with this model, which limits the utility of such estimates in trials and clinical practice.  In this abstract we present a Bayesian estimation 
methodology that reduces test-retest repeatability of vp estimates by around 50% in comparison to standard least-squares estimates.  This results in a more 
reliable measure that has similar repeatability to DC-CT based measures, and therefore has the potential to detect smaller changes as a result of therapeutic 
interventions.  In practice errors on vp have two principle causes: 1) estimates of vp are essentially determined from data acquired between 0 and 10-15 
seconds after the start of enhancement, and in the worst case there may be no data points acquired in this period, depending on the temporal resolution of the 
acquisition; 2) vp estimates therefore tend to be small relative to their statistical uncertainty, and as they are restricted to positive values, estimates of vp = 0 
are common, even with data showing clear enhancement.  Such estimates are logically incompatible with the compartmental model assumptions since vp = 0 
implies that contrast is not delivered to the imaged tissue.  Cause 1) can be mitigated by acquiring data as quickly as possible, though depending on the 
application, other constraints on the acquisition protocol may still restrict the sampling rate, resulting in worst-case data.  Cause 2) typically occurs when a 
least-squares curve-fitting algorithm is used that minimises the sum of squared errors between the data and the model curve, subject to the constraint vp ≥  0.  
Incompatible cases with vp = 0 could be fixed by modifying the constraint to vp ≥  ε for a suitable ε, but an objective method for selecting ε would be needed.  
Here we present a Bayesian estimation methodology that provides a minimum mean-squared error (MMSE) estimate of vp.  While this estimate is not 
obtained by explicitly deriving a lower bounding ε, the natural properties of the MMSE estimator closely mimic those of a lower bound derived from the 
apparent noise level for each voxel.  The implicit lower bound is such that differences between uptake curves with vp = x and vp = x + ε are within the limits 
of the data noise. 
 

Methods   The Extended Kety model has the form Ct(t) = vpCp(t) + veCe(t), 
where Ct(t) is the tissue concentration-time curve (CTC), Cp(t) is the plasma 
CTC, and Ce(t) = Cp(t) ⊗ kepexp(–kept) is the extra-vascular extra-cellular CTC.  
The data model is yn = Ct(tn – τ0) + En for n = 1, 2, … N, where En are 
independent Gaussian noise terms and the unknown parameters are vp, ve, kep 
and τ0.  The data model is used to derive a (complete) likelihood function for 
the probability density function of the data conditioned on values for the 
unknown parameters and unknown noise variance, p(y1:N | vp, ve, kep, τ0, σ2).  
Since the error model is Gaussian, the maximum likelihood estimate (MLE) is 
the same as the least-squares estimate.  For the Bayesian estimator a prior 
distribution is used to encode the lower-bound on vp, that is p(vp) = 1 for  
0 ≤  vp ≤  1, p(vp) = 0 otherwise.  (A more detailed prior distribution would be 
derived from the combined constraint vp + ve ≤  1, but this is unnecessary in 
practice as this upper limit is rarely reached.)  With this prior distribution a 
marginalised likelihood is derived using p(y1:N  | ve,kep,τ0) = ∫∫ p(y1:N | vp,ve, kep,τ0,σ2) p(vp) p(σ2) dvp dσ2, where the prior on the noise variance is a conjugate 
inverse-gamma distribution.  An explicit form for this double integral is derived in terms of the incomplete beta function, which is computed using standard 
library functions.  Estimates, denoted 0epe ˆandˆ,ˆ τkv  are obtained with standard function optimisation methods using the marginalised likelihood 
p(y1:N | ve, kep, τ0) as the objective function. (This is equivalent to a Bayesian a posteriori estimate with uniform prior distributions for ve, kep and τ0.)  
Minimum mean-squared error (MMSE) estimates of vp are derived using 
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also be computed using standard library functions.  Due to the integral forms of the marginalised likelihood and the MMSE vp estimate, estimates derived 
from the marginalised likelihood are affected by all probable vp values, whereas estimates derived from the complete likelihood are only affected by vp at the 
MLE.  In cases where the MLE of vp = 0, there will nevertheless be a range of vp > 0 that have non-negligible likelihood values, and it is this range that 
relates to the implicit threshold ε discussed in the introduction.  Another key consequence of this is that pv̂ is strictly greater than zero. 

DCE-MRI data were acquired with the following set-up. 0.2mg/kg Magnevist followed by 20mls saline both at 3mls/sec; 1.5T Siemens Avanto; 3D FFE 
sequence with TR/TE = 3.05/0.89 ms, FA = 16o, 14×5mm slices NSA = 1, IPAT = 2, FOV = 308x320mm, 208x256 matrix. Dynamic scans were preceded 
by a calibration scan with the same parameters except FA = 3o, NSA = 8 to enable contrast quantification.  26 patients were imaged twice at baseline, 7 days 
apart. 17/26 patients were imaged coronally using a sequential breath-hold technique optimised for liver lesions; two image volumes were acquired during 
each 6 sec breath-hold, followed by a 6 sec breathing gap, 40 volumes were acquired over a 4 minute period. 9/26 patients were imaged axially with a free 
breathing technique; 80 image volumes acquired continuously at 3.3 sec/vol for 4.3 min.  MLE and MMSE estimates of vp were obtained voxel-wise from 
tumour ROIs drawn on four central slices, from which median values were used to summarise each volume.  The plasma CTC used in the fitting was based 
on a population-averaged curve [2].  DC-CT data were acquired from the same patients on the same days with the following set-up. GE Lightspeed; 
Omnipaque 300 0.5ml/kg followed by 20 mls saline both at 3-5mls/sec; 5 second delay followed by breath hold cine covering 4x5mm, at 0.5 sec/volume  in 
centre of lesion of interest over 55 sec at 120 kV, 60 mA; following this, twelve breath acquisitions at 10 sec intervals.  Blood volume (BV) estimates were 
obtained from ROIs drawn on all 4 slices within the GE Perfusion 3 Software which uses an algorithm based on the St Lawrence and Lee model and reports 
the mean value from the tumour volume. 
 

Results  Bland-Altman plots were generated for log(vp) for the DCE-MRI data and log(BV) for the DC-CT data, from which limits of repeatability expressed 
as percentage changes were derived, as shown in the figure.  The 95% confidence intervals were: MLE = -75.4 to 212%, MMSE = -48.5 to 79.2% and DC-
CT BV -45.5 to 90.5%.  For the DCE-MRI, separate statistics can be calculated for the breath-hold and free-breathing cases and these are: Free-breathing, 
MLE = -75.1 to 172%, MMSE = -52.3 to 71.1%; Breath-hold, MLE = -87.6 to 675%, MMSE = -60.9 to 146%.   
 

Discussion and Conclusions   The repeatability limits of the MMSE are around 50% smaller than the MLE, and thus this estimator will be sensitive to 
treatment effects that are proportionately smaller.  The MMSE repeatability is very similar to that obtained for BV, which is the nearest equivalent DC-CT 
parameter.  Comparison of the MR estimates with the CT estimates is not direct since they are obtained using very different acquisition and post-processing 
methods, but we include these data as they give some indication of the relative performance of MR and CT for measuring vascular volumes.  Further work is 
needed to assess the sensitivity of these measures to treatment effects.  The repeatability of free-breathing DCE-MRI estimates are better than the breath-hold 
estimates, which is expected due to the higher sampling rate, although the statistics are strongly influenced by a small number of possibly outlying cases. 
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Figure showing Bland-Altman plots for various measures.  Dots are 
individual patients, solid line is mean difference, dotted lines give 95% 
confidence limits on percentage change. 
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