Bayesian Estimation Improves Plasma Volume Repeatability with Compartmental Modelling of DCE-MRI Data
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Introduction The Extended Kety model (also known as the Modified Tofts model [1]) is a compartmental model that is widely used for modelling DCE-
MRI data. It is well known that estimates of the plasma volume fraction parameter (v,) are subject to large errors compared with other parameters that can
be obtained with this model, which limits the utility of such estimates in trials and clinical practice. In this abstract we present a Bayesian estimation
methodology that reduces test-retest repeatability of v, estimates by around 50% in comparison to standard least-squares estimates. This results in a more
reliable measure that has similar repeatability to DC-CT based measures, and therefore has the potential to detect smaller changes as a result of therapeutic
interventions. In practice errors on v, have two principle causes: 1) estimates of v, are essentially determined from data acquired between 0 and 10-15
seconds after the start of enhancement, and in the worst case there may be no data points acquired in this period, depending on the temporal resolution of the
acquisition; 2) v, estimates therefore tend to be small relative to their statistical uncertainty, and as they are restricted to positive values, estimates of v, =0
are common, even with data showing clear enhancement. Such estimates are logically incompatible with the compartmental model assumptions since v,= 0
implies that contrast is not delivered to the imaged tissue. Cause 1) can be mitigated by acquiring data as quickly as possible, though depending on the
application, other constraints on the acquisition protocol may still restrict the sampling rate, resulting in worst-case data. Cause 2) typically occurs when a
least-squares curve-fitting algorithm is used that minimises the sum of squared errors between the data and the model curve, subject to the constraint v, > 0.
Incompatible cases with v, = 0 could be fixed by modifying the constraint to v, > € for a suitable €, but an objective method for selecting € would be needed.
Here we present a Bayesian estimation methodology that provides a minimum mean-squared error (MMSE) estimate of v,. While this estimate is not
obtained by explicitly deriving a lower bounding €, the natural properties of the MMSE estimator closely mimic those of a lower bound derived from the
apparent noise level for each voxel. The implicit lower bound is such that differences between uptake curves with v, = x and v, = x + € are within the limits
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Methods The Extended Kety model has the form Cy(f) = v,Cy(t) + veCe(?),
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Since the error model is Gaussian, the maximum likelihood estimate (MLE) is 100,
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marginalised likelihood is derived using p(yi.y | Ve,kep, ) = ” PN VpsVe, kep,u],cz) p(vp) p(cd) dv, do?, where the prior on the noise variance is a conjugate
inverse-gamma distribution. An explicit form for this double integral is derived in terms of the incomplete beta function, which is computed using standard
library functions. Estimates, denoted ﬁc,lécp and?, are obtained with standard function optimisation methods using the marginalised likelihood
PO | Ve, kep, To) as the objective function. (This is equivalent to a Bayesian a posteriori estimate with uniform prior distributions for v, ke, and To.)
Minimum mean-squared error (MMSE) estimates of v, are derived using v, = p(y,y \GC,IQCP,%O)" X ”vp Pin \vp,ﬁc,lécp,"ro) p(v,) p(c?) dv, do? which can

also be computed using standard library functions. Due to the integral forms of the marginalised likelihood and the MMSE v, estimate, estimates derived
from the marginalised likelihood are affected by all probable v, values, whereas estimates derived from the complete likelihood are only affected by v, at the
MLE. In cases where the MLE of v, = 0, there will nevertheless be a range of v, > 0 that have non-negligible likelihood values, and it is this range that

relates to the implicit threshold € discussed in the introduction. Another key consequence of this is that ﬁp is strictly greater than zero.

DCE-MRI data were acquired with the following set-up. 0.2mg/kg Magnevist followed by 20mls saline both at 3mls/sec; 1.5T Siemens Avanto; 3D FFE
sequence with TR/TE = 3.05/0.89 ms, FA = 16°, 14x5mm slices NSA = 1, IPAT = 2, FOV = 308x320mm, 208x256 matrix. Dynamic scans were preceded
by a calibration scan with the same parameters except FA = 3°, NSA = 8 to enable contrast quantification. 26 patients were imaged twice at baseline, 7 days
apart. 17/26 patients were imaged coronally using a sequential breath-hold technique optimised for liver lesions; two image volumes were acquired during
each 6 sec breath-hold, followed by a 6 sec breathing gap, 40 volumes were acquired over a 4 minute period. 9/26 patients were imaged axially with a free
breathing technique; 80 image volumes acquired continuously at 3.3 sec/vol for 4.3 min. MLE and MMSE estimates of v, were obtained voxel-wise from
tumour ROIs drawn on four central slices, from which median values were used to summarise each volume. The plasma CTC used in the fitting was based
on a population-averaged curve [2]. DC-CT data were acquired from the same patients on the same days with the following set-up. GE Lightspeed;
Omnipaque 300 0.5ml/kg followed by 20 mls saline both at 3-Smls/sec; 5 second delay followed by breath hold cine covering 4x5mm, at 0.5 sec/volume in
centre of lesion of interest over 55 sec at 120 kV, 60 mA; following this, twelve breath acquisitions at 10 sec intervals. Blood volume (BV) estimates were
obtained from ROIs drawn on all 4 slices within the GE Perfusion 3 Software which uses an algorithm based on the St Lawrence and Lee model and reports
the mean value from the tumour volume.

Results Bland-Altman plots were generated for log(v,) for the DCE-MRI data and log(BV) for the DC-CT data, from which limits of repeatability expressed
as percentage changes were derived, as shown in the figure. The 95% confidence intervals were: MLE = -75.4 to 212%, MMSE = -48.5 to 79.2% and DC-
CT BV -45.5 t0 90.5%. For the DCE-MRI, separate statistics can be calculated for the breath-hold and free-breathing cases and these are: Free-breathing,
MLE = -75.1 to 172%, MMSE = -52.3 to 71.1%; Breath-hold, MLE = -87.6 to 675%, MMSE = -60.9 to 146%.

Discussion and Conclusions The repeatability limits of the MMSE are around 50% smaller than the MLE, and thus this estimator will be sensitive to
treatment effects that are proportionately smaller. The MMSE repeatability is very similar to that obtained for BV, which is the nearest equivalent DC-CT
parameter. Comparison of the MR estimates with the CT estimates is not direct since they are obtained using very different acquisition and post-processing
methods, but we include these data as they give some indication of the relative performance of MR and CT for measuring vascular volumes. Further work is
needed to assess the sensitivity of these measures to treatment effects. The repeatability of free-breathing DCE-MRI estimates are better than the breath-hold
estimates, which is expected due to the higher sampling rate, although the statistics are strongly influenced by a small number of possibly outlying cases.
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