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Introduction   Diffusion Weighted Imaging with multiple b-values is being used more widely in a number of application areas, including clinical 
trials for assessment of novel cancer therapeutics.  Since the contrast mechanism is endogenous, a greater degree of control is in principle possible, 
which has the potential to give accurate quantitative measures to assess treatment effects.  A number of different models for the b-value dependent 
signal attenuation are appearing in the literature, and the suitability and biological interpretation of these is a matter of current debate.  In this 
abstract we present repeatability results for a number of different diffusion models and analysis methods obtained from multiple b-value DWI data 
acquired in a Phase I clinical trial setting. 
 

Methods   Repeat baseline DWI data were obtained not more than 7 days apart from 22 Phase I patients with a range of pelvic and abdominal 
tumours and metastases.  Axial images were acquired under free-breathing on a 1.5T Siemens Avanto using a multi-slice EPI sequence: 20×5mm 
slices, 380mm FOV, 1282 matrix with 6/8 partial acquisition in the PE direction, TE = 69ms, TR = 3500ms, NSA = 6, GRAPPA factor = 2, SPAIR 
fat suppression, b-values = 0, 50, 100, 250, 500, 750 s/mm2, 3-scan trace images, total acquisition time 6 min 51 sec.  ROIs were drawn by an 
experienced radiologist to segment the whole volume of the index lesion.  The four diffusion models summarised in the table below were fitted 
voxel-wise to these data, from which median values over each tumour volume were reported.  Model ME was fitted in two ways: 1) to all b-values, 
2) to b-values ≥ 100 s/mm2, which gives a 
diffusion estimate insensitive to perfusion 
effects at low b-values.  Two parameter 
estimation methods were used:  1) a 
standard least-squares optimisation 
algorithm with parameter constraints 
listed in the table,  2) a Bayesian approach 
similar to that described by Neil and 
Bretthorst [4], where the minimum mean-
squared error (MMSE) estimate (given by 
the mean value under the posterior 
distribution for each parameter) is reported.  Broad prior distributions were used that were truncated at the same values as the constraints used in the 
least-squares estimation, and the integrals necessary for the MMSE computations were performed numerically using a fixed grid.  Bland-Altman 
plots and statistics of the log of the median for each parameter over the tumour volume were reviewed (except α for which log(1–α) was used as α 
is restricted to values <1 and estimates tend to be close to 1, so this transform gives approximately normally distributed data), from which a small 
number of outliers were apparent.  Since outliers were observed only in the smallest tumours,  a volume threshold of 50 cm3 was chosen to separate 
the data into large and small tumours, from which separate statistics are reported.  Tumour volumes ranged from 14 – 577 cm3, 9 cases were larger 
than 200 cm3, and six cases were under the 50cm3 threshold.  The Bland-Altman 95% repeatability limits for the log values were transformed to 
give equivalent limits of percentage change, and results are presented in the table. 
 

Results and Discussion   The least-squares and 
Bayesian methods have very similar repeatability 
limits for both ME models and the SE D parameter 
with both tumour volume groups.  Parameters SE 
α, GE σ, BE D* and BE f have substantially 
improved repeatability with the Bayesian method 
in both tumour volume groups.  Restricting the 
analysis to large tumours improves the 
repeatability by around a factor of two for models 
ME and SE, while for models GE and BE the 
improvements depend on the parameter, notable 
cases are D* and f in model BE with the least-
squares estimator.  The perfusion insensitive 
measure   ME   b ≥ 100   has   slightly   improved 
repeatability over model ME when all tumours are 
analysed, but there is little improvement when 
large tumours are analysed.  The repeatability of all the diffusion parameters (D) is best for the ME models, a little worse for SE, and noticeably 
worse for GE and BE.  This trend is explained by the increasing complexity of these models and the consequent noise sensitivity of the estimation 
process. 
 

Conclusions   To derive useful estimates from the more complex models (SE, GE and BE), these data suggest that only large tumours should be 
included and that the best repeatability is obtained using the Bayesian method.  The diffusion parameter repeatability for model SE is close to that 
of the simpler ME models, even though model SE has an additional parameter, and so determining the interpretation and sensitivity to change of α 
in the context of Phase I treatment response assessment is a subject of continuing work.  It should be noted that these results pertain to the diffusion 
protocol described, and in particular the b-value specification. 
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Code Name Equation S/S0 = Parameters and limits 

ME Mono-exponential exp(–b D) –10 < log D < –4,    
i.e. 4.5×10–10 < D < 0.0183 mm2/s. 

SE Stretched-exponential [1] exp(–(b D)α) D same as ME,   0 < α < 1. 
 

GE Gaussian-exponential [2] ∫ p(Δ) exp(–b Δ) dΔ p(Δ) = N(D,σ2), i.e. a Gaussian (Normal)
distribution, D same as ME,  0 <  σ < 5×10–3. 

BE Bi-exponential [3]  f exp(–b D*) + 
     (1–f ) exp(–b D) 

D same as ME,   0 < f < 1,   –7 < log D* < 0,  
i.e. 9.1×10–4 < D* < 1 mm2/s, and  D* > D. 

Table showing 95% repeatability limits of percentage change between baseline estimates. 

    Tumour volume > 50 cm 3 (n=22) All tumours (n=16) 
Model Parameter Least-squares Bayesian Least-squares Bayesian 
ME D -6.65, 6.05  -6.58, 6.16 -11.6, 11.2  -11.3, 10.6 
ME b≥100 D -6.15, 6.60  -6.30, 6.81 -11.0, 9.59  -10.2, 9.43 
SE D -7.07, 6.75  -6.81, 7.68 -13.1, 12.2  -13.2, 13.8 
SE 1−α -43.1 55.2 -33.1 33.3 -42.1 74.4 -31.2 45.1 
GE D -9.19, 8.32   -9.5, 8.85 -14.2, 15.9  -14.6, 16.3 
GE σ -35.4, 42.1  -16.9, 17.4 -36.6, 46.8  -20.9, 26.5 
BE D -13.8, 16.9  -8.79, 10.4 -17.0, 16.1  -12.6, 12.8 
BE D* -49.1, 102  -25.7, 32.6 -67.0, 243  -39.8, 65.0 
BE f -42.9, 55.6  -24.8, 22.1 -49.1, 100  -31.3, 41.4 
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