Theoretical determination of the dielectric constant for passive RF shimming at high field M. L. Jayatilake^{1,2}, J. Storrs^{1,3}, W-J. Chu^{1,3}, and J-H. Lee^{1,4} ¹Center for Imaging Research, University of Cincinnati, Cincinnati, OH, United States, ²Department of Physics, University of Cincinnati, Cincinnati, OH, United States, ³Department of Psychiatry and Behavioural Neuroscience, University of Cincinnati, Cincinnati, OH, United States, ⁴School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH, United States Introduction: Optimal image quality for MRI at high fields requires a homogeneous RF (B_I) field among others; however, dielectric properties of the human body result in severe B_I field inhomogeneity. These are resulted from constructive and destructive RF interactions of complex wave behaviour, which become worse with increasing Larmor frequency. Placement of a shim object with high-dielectric constant adjacent to the body has been proposed as a method for reducing B_I inhomogeneity by altering wave propagation within the volume of interest [1, 2, 3, and 4]. Selecting the appropriate permittivity and the quantity of material for the correction of B_I field is essential. While previous work determined primarily empirically the dielectric properties of the shim object, this work introduces a theoretical framework for calculating the requisite dielectric constant of the passive shim material and verifies the accuracy using simulated field maps. **Theory and Methods**: The human head is approximated by a cylinder with radius r_t of 20 cm. The head lies inside a TEM coil with inner and outer radii r_2 and r_3 of 28 and 34 cm, respectively. The head and coil are coaxial (Fig. 1). The relative permittivity and conductivity of brain is $\varepsilon_r = 58$ and $\sigma = 0.3$ S/m, respectively; and both the brain-to-coil and inner-to-outer coil spaces are filled with air with permittivity ε_0 [2]. It is assumed that B_I field propagates along the B_0 direction. The general solution of the propagating electromagnetic wave has a unique solution at each region with unknown amplitudes. After applying the boundary conditions to wave solutions in each region, the characteristic equation can be determined [5]. The characteristic equation can further be simplified by substituting the first terms in series expansion of the Bessel function. The simplified characteristic equation is $$f(k_{\rho 0}, k_{\rho}, k_{\rho}, k_{\rho}, k_{z}) = r_{1}^{2} \cdot k_{z}^{2} \cdot k_{\rho}^{2} \cdot (k^{2} - k_{0}^{2}) \cdot (r_{2}^{2} - r_{1}^{2}) \cdot \alpha + k_{\rho}^{2} \cdot k_{\rho 0}^{2} \cdot (2k^{2} \cdot k_{\rho 0}^{2} \cdot (r_{2}^{2} - r_{1}^{2}) + k_{\rho}^{2} \cdot k_{0}^{2} \cdot (r_{2}^{2} + r_{1}^{2})) \cdot (r_{1}^{2} \cdot k_{z}^{2} \cdot k_{\rho}^{2} \cdot \alpha' - k_{\rho 0}^{2} \cdot \alpha') = 0$$ $$(1)$$ Here k, k_0 , k_z and k_ρ are the brain, air, axial and radial propagation constants respectively. The k_z and k_ρ characterize the RF field amplitude distribution within the brain, where α and α' are given below. $$\alpha = -2 \cdot (r_1^2 + \pi \cdot r_2) / \pi^2 \cdot r_1 \cdot r_3^3 \cdot k_{\rho_0}$$ (2); $$\alpha' = -2 \cdot (r_1 + \pi \cdot k_{\rho_0} \cdot r_3^2) / \pi^2 \cdot r_1 \cdot r_2 \cdot r_3^2 \cdot k_{\rho_0}$$ (3) The values of k_{ρ} and $k_{\rho0}$ depend on the dielectric properties within the brain and brain-to-coil region. $$k_{\rho}^{2} = k^{2} - k_{z}^{2}$$ (4); $k_{\rho 0}^{2} = k_{0}^{2} - k_{z}^{2}$ Loading with high dielectric material into the brain-to-coil air region significantly influence on the propagation characteristics of the head coil which is demonstrated by changes in k_z . Combining Eqs. (2), (3), (4) and (5), the $f(k_{\rho 0}, k_{\rho}, k_{0}, k, k_{z})$ can be expressed as a function of k_{z} and k_{ρ} . The modified characteristic equation can be factored to express the k_z as a function of the k_o . Based on this relationship between radial and axial propagation constants, it is possible to maximize k_z and minimize k_{ρ} . Additionally, the $f(k_{\rho\theta}, k_{\rho}, k_{\theta}, k_{s})$ can also be expressed as a function of k_{z} and effective dielectric constant (ε) in the body-to-coil region, i.e. $g(k_z, \varepsilon)$. The range of required effective ε and corresponding k_z can then be determined when the modified characteristic function $g(k_z, \varepsilon)$ approaches zero. Once the maximal k_z has been determined, the requisite effective ε for B_I passive shimming can be determined. **Results**: Based on the relationship between k_{ρ} and k_{z} (Fig. 2A) the minimum k_{ρ} of Figure 2(A) Plot of the correlation of axial vs. $0.34cm^{-1}$ is obtained at the maximum k_z of $1.82cm^{-1}$ for a 4T magnet. Additionally, at the first maximum of k_z , the radial wave length of $\lambda_\rho = 2\pi / k_\rho$ is about 18.5cm which is comparable to the size of the subject's brain. According to Fig. 2B the appropriate magnitude range of the effective ε of 92 - 94 is determined corresponding to k_z of $1.82cm^{-1}$ as $g(k_z, \varepsilon)$ reaches zero. Fig. 3 shows the simulated B_I field map after filling the body-to-coil region with (A) air and (B) a dielectric material with ε of 94 which is obtained according to Eq. (1). The B_I field map is normalized to the field amplitude at the center of the FOV with the assumption that the entire brain has a uniform dielectric constant. The results clearly show that the ripples of the B_I field distribution within the brain are significantly reduced as the ε within the bodyto-coil region increased. being conducted in vivo. References: [1] Haines et al., J Magn Reson Imaging 203;323-327 (2010). [2] Foo et al., Magn Reson Med 23:287–301(1992). [3] Figure 1 Cylindrical model of brain, coil and RF shield. radial propagation constant. (B) The distribution of the modified characteristic equation of $g(k_z,\varepsilon)$ according to variation of both axial propagation constant and dielectric distributions for axial slices of the subject's brain. Yang et al., J Magn Reson Imaging 24;197–202(2006). [4] Yang et al., J Magn Reson Imaging 47;982–989(2002). [5] Foo et al., Magn Reson Med 21:165-177(1991).